A treasure chest for visual recognition powered by PaddlePaddle.
Project description
PaddleClas wheel package
PaddleClas supports Python wheel package for prediction. At present, PaddleClas wheel supports image classification including ImagetNet1k models and PULC models, but does not support mainbody detection, feature extraction and vector retrieval.
Catalogue
- 1. Installation
- 2. Quick Start
- 3. Definition of Parameters
- 4. More usage
- 4.1 View help information
- 4.2 Prediction using inference model provide by PaddleClas
- 4.3 Prediction using local model files
- 4.4 Prediction by batch
- 4.5 Prediction of Internet image
- 4.6 Prediction of
NumPy.array
format image - 4.7 Save the prediction result(s)
- 4.8 Specify the mapping between class id and label name
1. Installation
- [Recommended] Installing from PyPI:
pip3 install paddleclas
- Please build and install locally if you need to use the develop branch of PaddleClas to experience the latest functions, or need to redevelop based on PaddleClas. The command is as follows:
python3 setup.py install
2. Quick Start
2.1 ImageNet1k models
Using the ResNet50
model provided by PaddleClas, the following image('docs/images/inference_deployment/whl_demo.jpg'
) as an example.
- Python
from paclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
Note: PaddleClas.predict()
is a generator
. Therefore you need to use next()
or for
call it iteratively. It will perform a prediction by batch_size
and return the prediction result(s) when called. Examples of returned results are as follows:
>>> result
[{'class_ids': [8, 7, 136, 80, 84], 'scores': [0.79368, 0.16329, 0.01853, 0.00959, 0.00239], 'label_names': ['hen', 'cock', 'European gallinule, Porphyrio porphyrio', 'black grouse', 'peacock']}]
- CLI
paddleclas --model_name=ResNet50 --infer_imgs="docs/images/inference_deployment/whl_demo.jpg"
>>> result
filename: docs/images/inference_deployment/whl_demo.jpg, top-5, class_ids: [8, 7, 136, 80, 84], scores: [0.79368, 0.16329, 0.01853, 0.00959, 0.00239], label_names: ['hen', 'cock', 'European gallinule, Porphyrio porphyrio', 'black grouse', 'peacock']
Predict complete!
2.2 PULC models
PULC integrates various state-of-the-art algorithms such as backbone network, data augmentation and distillation, etc., and finally can automatically obtain a lightweight and high-precision image classification model.
PaddleClas provides a series of test cases, which contain demos of different scenes about people, cars, OCR, etc. Click here to download the data.
Prection using the PULC "Human Exists Classification" model provided by PaddleClas:
- Python
import paclas
model = paclas.PaddleClas(model_name="person_exists")
result = model.predict(input_data="pulc_demo_imgs/person_exists/objects365_01780782.jpg")
print(next(result))
>>> result
[{'class_ids': [0], 'scores': [0.9955421453341842], 'label_names': ['nobody'], 'filename': 'pulc_demo_imgs/person_exists/objects365_01780782.jpg'}]
Nobody
means there is no one in the image, someone
means there is someone in the image. Therefore, the prediction result indicates that there is no one in the figure.
Note: model.predict()
is a generator, so next()
or for
is needed to call it. This would to predict by batch that length is batch_size
, default by 1. You can specify the argument batch_size
and model_name
when instantiating PaddleClas object, for example: model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)
. Please refer to Supported Model List for the supported model list.
- CLI
paddleclas --model_name=person_exists --infer_imgs=pulc_demo_imgs/person_exists/objects365_01780782.jpg
>>> result
class_ids: [0], scores: [0.9955421453341842], label_names: ['nobody'], filename: pulc_demo_imgs/person_exists/objects365_01780782.jpg
Predict complete!
Note: The "--infer_imgs" argument specify the image(s) to be predict, and you can also specify a directoy contains images. If use other model, you can specify the --model_name
argument. Please refer to Supported Model List for the supported model list.
Supported Model List
The name of PULC series models are as follows:
Name | Intro |
---|---|
person_exists | Human Exists Classification |
person_attribute | Pedestrian Attribute Classification |
safety_helmet | Classification of Wheather Wearing Safety Helmet |
traffic_sign | Traffic Sign Classification |
vehicle_attribute | Vehicle Attribute Classification |
car_exists | Car Exists Classification |
text_image_orientation | Text Image Orientation Classification |
textline_orientation | Text-line Orientation Classification |
language_classification | Language Classification |
Please refer to Human Exists Classification、Pedestrian Attribute Classification、Classification of Wheather Wearing Safety Helmet、Traffic Sign Classification、Vehicle Attribute Classification、Car Exists Classification、Text Image Orientation Classification、Text-line Orientation Classification、Language Classification for more information about different scenarios.
3. Definition of Parameters
The following parameters can be specified in Command Line or used as parameters of the constructor when instantiating the PaddleClas object in Python.
- model_name(str): If using inference model based on ImageNet1k provided by Paddle, please specify the model's name by the parameter.
- inference_model_dir(str): Local model files directory, which is valid when
model_name
is not specified. The directory should containinference.pdmodel
andinference.pdiparams
. - infer_imgs(str): The path of image to be predicted, or the directory containing the image files, or the URL of the image from Internet.
- use_gpu(bool): Whether to use GPU or not.
- gpu_mem(int): GPU memory usages.
- use_tensorrt(bool): Whether to open TensorRT or not. Using it can greatly promote predict preformance.
- enable_mkldnn(bool): Whether enable MKLDNN or not.
- cpu_num_threads(int): Assign number of cpu threads, valid when
--use_gpu
isFalse
and--enable_mkldnn
isTrue
. - batch_size(int): Batch size.
- resize_short(int): Resize the minima between height and width into
resize_short
. - crop_size(int): Center crop image to
crop_size
. - topk(int): Print (return) the
topk
prediction results when Topk postprocess is used. - threshold(float): The threshold of ThreshOutput when postprocess is used.
- class_id_map_file(str): The mapping file between class ID and label.
- save_dir(str): The directory to save the prediction results that can be used as pre-label.
Note: If you want to use Transformer series models
, such as DeiT_***_384
, ViT_***_384
, etc., please pay attention to the input size of model, and need to set resize_short=384
, resize=384
. The following is a demo.
- CLI:
from paddleclas import PaddleClas, get_default_confg
paddleclas --model_name=ViT_base_patch16_384 --infer_imgs='docs/images/inference_deployment/whl_demo.jpg' --resize_short=384 --crop_size=384
- Python:
from paclas import PaddleClas
clas = PaddleClas(model_name='ViT_base_patch16_384', resize_short=384, crop_size=384)
4. Usage
PaddleClas provides two ways to use:
- Python interative programming;
- Bash command line programming.
4.1 View help information
- CLI
paddleclas -h
4.2 Prediction using inference model provide by PaddleClas
You can use the inference model provided by PaddleClas to predict, and only need to specify model_name
. In this case, PaddleClas will automatically download files of specified model and save them in the directory ~/.paddleclas/
.
- Python
from paclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
- CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
4.3 Prediction using local model files
You can use the local model files trained by yourself to predict, and only need to specify inference_model_dir
. Note that the directory must contain inference.pdmodel
and inference.pdiparams
.
- Python
from paclas import PaddleClas
clas = PaddleClas(inference_model_dir='./inference/')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
- CLI
paddleclas --inference_model_dir='./inference/' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
4.4 Prediction by batch
You can predict by batch, only need to specify batch_size
when infer_imgs
is direcotry contain image files.
- Python
from paclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', batch_size=2)
infer_imgs = 'docs/images/'
result=clas.predict(infer_imgs)
for r in result:
print(r)
- CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --batch_size 2
4.5 Prediction of Internet image
You can predict the Internet image, only need to specify URL of Internet image by infer_imgs
. In this case, the image file will be downloaded and saved in the directory ~/.paddleclas/images/
.
- Python
from paclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'https://raw.githubusercontent.com/paddlepaddle/paddleclas/release/2.2/docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
- CLI
paddleclas --model_name='ResNet50' --infer_imgs='https://raw.githubusercontent.com/paddlepaddle/paddleclas/release/2.2/docs/images/inference_deployment/whl_demo.jpg'
4.6 Prediction of NumPy.array format image
In Python code, you can predict the NumPy.array
format image, only need to use the infer_imgs
to transfer variable of image data. Note that the models in PaddleClas only support to predict 3 channels image data, and channels order is RGB
.
- python
import cv2
from paclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = cv2.imread("docs/en/inference_deployment/whl_deploy_en.md")[:, :, ::-1]
result=clas.predict(infer_imgs)
print(next(result))
4.7 Save the prediction result(s)
You can save the prediction result(s) as pre-label, only need to use pre_label_out_dir
to specify the directory to save.
- python
from paclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs)
print(next(result))
- CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
4.8 Specify the mapping between class id and label name
You can specify the mapping between class id and label name, only need to use class_id_map_file
to specify the mapping file. PaddleClas uses ImageNet1K's mapping by default.
The content format of mapping file shall be:
class_id<space>class_name<\n>
For example:
0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
......
- Python
from paclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
- CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg' --class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file paclas-0.0.1.post0.tar.gz
.
File metadata
- Download URL: paclas-0.0.1.post0.tar.gz
- Upload date:
- Size: 205.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 282327a8614462bc7e87191781524815a7da439bd8cd18f44e95a11e9d3ebb0a |
|
MD5 | 5feb3725254f2063dd231dbc381aaff9 |
|
BLAKE2b-256 | 47e46b2de4e4eefedd131fe78cb31297644e0172edf1b5ba382788acb5598d94 |
File details
Details for the file paclas-0.0.1.post0-py3-none-any.whl
.
File metadata
- Download URL: paclas-0.0.1.post0-py3-none-any.whl
- Upload date:
- Size: 662.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8be9386744acd5549a5238347028ee89f8863b329dc5162f0ec3f913e179a729 |
|
MD5 | 4fcdf1a10be44a86b04a06d98c653680 |
|
BLAKE2b-256 | a780f8b1b8c6d79f74c64fde06cf1c8ffae28dc22de77386b1cc0a5f2033819f |