Skip to main content

Partial Atomic Charges for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Project description

PACMAN

A Partial Atomic Charge Predicter for Porous Materials based on Graph Convolutional Neural Network (PACMAN)

Requires Python 3.9 Zenodo MIT Gmail Linux Windows

Usage

from PACMANCharge import pmcharge
pmcharge.predict(cif_file="./test/Cu-BTC.cif",charge_type="DDEC6",digits=6,atom_type=True,neutral=True,keep_connect=True)
pmcharge.Energy(cif_file="./test/Cu-BTC.cif")
  • cif_file: cif file (without partial atomic charges) [cif path]
  • charge-type (default: DDE6): DDEC6, Bader, CM5 or REPEAT
  • digits (default: 6): number of decimal places to print for partial atomic charges. ML models were trained on a 6-digit dataset.
  • atom-type (default: True): keep the same partial atomic charge for the same atom types (based on the similarity of partial atomic charges up to 2 decimal places).
  • neutral (default: True): keep the net charge is zero. We use "mean" method to neuralize the system where the excess charges are equally distributed across all atoms.
  • keep_connect (default: True): retain the atomic and connection information (such as _atom_site_adp_type, bond) for the structure.

Website & Zenodo

PACMAN-APPlink
github repositorylink
DOWNLOAD full code and datasetlink But we will not update new vesion in Zenodo.

Reference

If you use PACMAN Charge, please cite this paper:

@article{       doi : 10.1021/acs.jctc.4c00434 ,
                author = {Zhao, Guobin and Chung, Yongchul G.},
                title = {PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials Based on Crystal Graph Convolution Networks},
                journal = {Journal of Chemical Theory and Computation},
                volume = {20},
                number = {12},
                pages = {5368-5380},
                year = {2024},
                doi = {10.1021/acs.jctc.4c00434},
                note ={PMID: 38822793},
                URL = {https://doi.org/10.1021/acs.jctc.4c00434},
                eprint = {https://doi.org/10.1021/acs.jctc.4c00434}
        }

Bugs

If you encounter any problem during using PACMAN, please email sxmzhaogb@gmail.com.

Group: Molecular Thermodynamics & Advance Processes Laboratory

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PACMAN-charge-1.3.4.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

PACMAN_charge-1.3.4-py3-none-any.whl (13.4 kB view details)

Uploaded Python 3

File details

Details for the file PACMAN-charge-1.3.4.tar.gz.

File metadata

  • Download URL: PACMAN-charge-1.3.4.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN-charge-1.3.4.tar.gz
Algorithm Hash digest
SHA256 8ece7cee708e85edfdaff4f2cefd09fbcd955be48a01e2ee9dfb85ca112915eb
MD5 bb54e03b71dfb4b8e76bebd851274dbf
BLAKE2b-256 cf7bd12818a6e85aa23bc2fd5217023b264ebc2d102b7d6d4217b24bcb4a034c

See more details on using hashes here.

File details

Details for the file PACMAN_charge-1.3.4-py3-none-any.whl.

File metadata

  • Download URL: PACMAN_charge-1.3.4-py3-none-any.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for PACMAN_charge-1.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 66ac035d3845a93458b5c97e39144a86130a35f418e886cab3d1354b5e92c6be
MD5 a6c66927af32dc4b6b7fe615cf4258bd
BLAKE2b-256 694103622bd31de3c2ed1feee1831b016a4d03ca6c9cdc962f40e58806f5039f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page