Python Adaptive Signal Processing
Project description
This library is designed to simplify adaptive signal processing tasks within python (filtering, prediction, reconstruction, classification). For code optimisation, this library uses numpy for array operations.
Also in this library is presented some new methods for adaptive signal processing. The library is designed to be used with datasets and also with real-time measuring (sample-after-sample feeding).
Tutorials and Documentation
Everything is on github:
Current Features
Adaptive Filters
The library features multiple adaptive filters. Input vectors for filters can be constructed manually or with the assistance of included functions. So far it is possible to use following filters:
LMS (least-mean-squares) adaptive filter
NLMS (normalized least-mean-squares) adaptive filter
RLS (recursive-least-squares) adaptive filter
GNGD (generalized normalized gradient descent) adaptive filter
Novelty/Outlier Detection
This method is based on adaptive parameters and filtering error evaluation (for LMS, NLMS, GNGD and RLS filters)
Neural Networks
So far it is imlemented only MLP neural network.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.