Skip to main content

Fast and differentiable MS-SSIM and SSIM for paddle.

Project description

Paddle MS-SSIM

Introduction

  • Fast and differentiable MS-SSIM and SSIM for Paddle.

  • Structural Similarity (SSIM):

  • Multi-Scale Structural Similarity (MS-SSIM):

Installation

  • via pip

    $ pip install paddle-msssim
    
  • via sources

    $ git clone https://github.com/AgentMaker/Paddle-MSSSIM
    
    $ cd Paddle-MSSSIM
    
    $ python setup.py install
    

Requirement

  • paddlepaddle / paddlepaddle-gpu >= 2.0.0

Usage

  • Basic Usage

    from paddle_msssim import ssim, ms_ssim, SSIM, MS_SSIM
    # X: (N,3,H,W) a batch of non-negative RGB images (0~255)
    # Y: (N,3,H,W)  
    
    # calculate ssim & ms-ssim for each image
    ssim_val = ssim( X, Y, data_range=255, size_average=False) # return (N,)
    ms_ssim_val = ms_ssim( X, Y, data_range=255, size_average=False ) #(N,)
    
    # set 'size_average=True' to get a scalar value as loss. see tests/tests_loss.py for more details
    ssim_loss = 1 - ssim( X, Y, data_range=255, size_average=True) # return a scalar
    ms_ssim_loss = 1 - ms_ssim( X, Y, data_range=255, size_average=True )
    
    # reuse the gaussian kernel with SSIM & MS_SSIM. 
    ssim_module = SSIM(data_range=255, size_average=True, channel=3) # channel=1 for grayscale images
    ms_ssim_module = MS_SSIM(data_range=255, size_average=True, channel=3)
    
    ssim_loss = 1 - ssim_module(X, Y)
    ms_ssim_loss = 1 - ms_ssim_module(X, Y)
    
  • Normalized input

    '''
    If you need to calculate MS-SSIM/SSIM on normalized images
    Please denormalize them to the range of [0, 1] or [0, 255] first
    '''
    # X: (N,3,H,W) a batch of normalized images (-1 ~ 1)
    # Y: (N,3,H,W)  
    X = (X + 1) / 2  # [-1, 1] => [0, 1]
    Y = (Y + 1) / 2  
    ms_ssim_val = ms_ssim( X, Y, data_range=1, size_average=False ) #(N,)
    
  • Enable nonnegative_ssim

    • For ssim, it is recommended to set nonnegative_ssim=True to avoid negative results. However, this option is set to False by default to keep it consistent with tensorflow and skimage.

    • For ms-ssim, there is no nonnegative_ssim option and the ssim reponses is forced to be non-negative to avoid NaN results.

Test

  • Switch to the tests dir

    $ cd ./tests
    
  • Benchmark

    $ python comparisons_skimage_tf_torch.py
    
      outputs(AMD Ryzen 4600H): 
    
      ===================================
                  Test SSIM
      ===================================
      ====> Single Image
      Repeat 10 times
      sigma=0.0 ssim_skimage=1.000000 (247.7732 ms), ssim_tf=1.000000 (277.2696 ms), ssim_paddle=1.000000 (179.4677 ms), ssim_torch=1.000000 (183.6994 ms)
      sigma=10.0 ssim_skimage=0.932399 (226.1620 ms), ssim_tf=0.932640 (257.2435 ms), ssim_paddle=0.932636 (163.2263 ms), ssim_torch=0.932400 (179.1418 ms)
      sigma=20.0 ssim_skimage=0.786023 (224.1826 ms), ssim_tf=0.786032 (279.2126 ms), ssim_paddle=0.786017 (158.3070 ms), ssim_torch=0.786027 (180.0890 ms)
      sigma=30.0 ssim_skimage=0.637174 (237.5582 ms), ssim_tf=0.637183 (267.6092 ms), ssim_paddle=0.637165 (167.9277 ms), ssim_torch=0.637178 (181.7910 ms)
      sigma=40.0 ssim_skimage=0.515865 (221.0388 ms), ssim_tf=0.515876 (264.3230 ms), ssim_paddle=0.515857 (170.7676 ms), ssim_torch=0.515869 (189.0941 ms)
      sigma=50.0 ssim_skimage=0.422551 (222.6846 ms), ssim_tf=0.422558 (273.1971 ms), ssim_paddle=0.422542 (168.3579 ms), ssim_torch=0.422554 (176.7442 ms)
      sigma=60.0 ssim_skimage=0.351337 (215.1536 ms), ssim_tf=0.351340 (270.5560 ms), ssim_paddle=0.351325 (164.3315 ms), ssim_torch=0.351340 (194.6781 ms)
      sigma=70.0 ssim_skimage=0.295752 (210.0273 ms), ssim_tf=0.295756 (272.1814 ms), ssim_paddle=0.295744 (169.3864 ms), ssim_torch=0.295755 (178.9230 ms)
      sigma=80.0 ssim_skimage=0.253164 (239.2978 ms), ssim_tf=0.253169 (260.8894 ms), ssim_paddle=0.253157 (184.7061 ms), ssim_torch=0.253166 (181.4640 ms)
      sigma=90.0 ssim_skimage=0.219240 (224.7329 ms), ssim_tf=0.219245 (270.3727 ms), ssim_paddle=0.219235 (172.3580 ms), ssim_torch=0.219242 (180.5838 ms)
      sigma=100.0 ssim_skimage=0.192630 (238.8582 ms), ssim_tf=0.192634 (261.4317 ms), ssim_paddle=0.192624 (166.0294 ms), ssim_torch=0.192632 (175.7241 ms)
      Pass!
      ====> Batch
      Pass!
    
    
      ===================================
                  Test MS-SSIM
      ===================================
      ====> Single Image
      Repeat 10 times
      sigma=0.0 msssim_tf=1.000000 (534.9398 ms), msssim_paddle=1.000000 (231.7381 ms), msssim_torch=1.000000 (257.3238 ms)
      sigma=10.0 msssim_tf=0.991148 (525.1758 ms), msssim_paddle=0.991147 (213.8527 ms), msssim_torch=0.991101 (243.9299 ms)
      sigma=20.0 msssim_tf=0.967450 (523.3070 ms), msssim_paddle=0.967447 (217.2415 ms), msssim_torch=0.967441 (253.1073 ms)
      sigma=30.0 msssim_tf=0.934692 (538.5145 ms), msssim_paddle=0.934687 (215.2203 ms), msssim_torch=0.934692 (242.5429 ms)
      sigma=40.0 msssim_tf=0.897363 (558.0346 ms), msssim_paddle=0.897357 (219.1107 ms), msssim_torch=0.897362 (249.1027 ms)
      sigma=50.0 msssim_tf=0.859276 (524.8582 ms), msssim_paddle=0.859267 (232.4189 ms), msssim_torch=0.859275 (263.1328 ms)
      sigma=60.0 msssim_tf=0.820967 (512.8726 ms), msssim_paddle=0.820958 (223.7422 ms), msssim_torch=0.820965 (251.9713 ms)
      sigma=70.0 msssim_tf=0.784204 (529.6149 ms), msssim_paddle=0.784194 (213.1742 ms), msssim_torch=0.784203 (244.9676 ms)
      sigma=80.0 msssim_tf=0.748574 (545.3014 ms), msssim_paddle=0.748563 (222.8581 ms), msssim_torch=0.748572 (261.0413 ms)
      sigma=90.0 msssim_tf=0.715980 (538.3886 ms), msssim_paddle=0.715968 (214.4464 ms), msssim_torch=0.715977 (282.6247 ms)
      sigma=100.0 msssim_tf=0.683882 (540.9150 ms), msssim_paddle=0.683870 (218.5596 ms), msssim_torch=0.683880 (244.1856 ms)
      Pass
      ====> Batch
      Pass
    

Example

  • Image comparison

    SSIM = 1.0000 SSIM = 0.4225 SSIM = 0.1924
  • As a loss function

    • switch to the examples/as_loss dir

      $ cd ./examples/as_loss
      
    • run the example script as_loss.py

      $ python as_loss.py
      
        Initial ssim: 0.9937540888786316
        step: 1 ssim_loss: 0.993843
        step: 2 ssim_loss: 0.993934
        step: 3 ssim_loss: 0.994021
        step: 4 ssim_loss: 0.994106
        step: 5 ssim_loss: 0.994190
        ...
        step: 81 ssim_loss: 0.999762
        step: 82 ssim_loss: 0.999785
        step: 83 ssim_loss: 0.999862
        step: 84 ssim_loss: 0.999874
        step: 85 ssim_loss: 0.999884
        step: 86 ssim_loss: 0.999892
        step: 87 ssim_loss: 0.999912
      
    • result

      Input Output
    • See examples/as_loss/as_loss.py for more details

  • Auto Encoder

References

Thanks

  • This repo is based on Pytorch MS-SSIM developed by @VainF.

  • Thanks to the above project and its developers.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

paddle_msssim-0.0.2.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

paddle_msssim-0.0.2-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file paddle_msssim-0.0.2.tar.gz.

File metadata

  • Download URL: paddle_msssim-0.0.2.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.1

File hashes

Hashes for paddle_msssim-0.0.2.tar.gz
Algorithm Hash digest
SHA256 cf9f387214bc9c1c8f2dbdafc0bc92250714f25e54ee311e03b6afa10df04abe
MD5 d9931346394cd054f5e5007aa201bdd6
BLAKE2b-256 058bcd8dfcfd5c97f379b9ca7bcb806b8e7bbba82b44e302c48df023fb2e18d0

See more details on using hashes here.

File details

Details for the file paddle_msssim-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: paddle_msssim-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.1

File hashes

Hashes for paddle_msssim-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 23d1739ef38c8713179326c75b6b5113e377cdeaceedebef7ae8f13c02af12ba
MD5 2ea12a5f4238d28c9d9ed025ecf267db
BLAKE2b-256 8ba1ac5cd2c2711df550a55e9444f0e451db0b8297ce72055ea03cab03b2dc5f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page