Skip to main content

Export PaddlePaddle to ONNX

Project description

Paddle2ONNX

简体中文 | English

1 Paddle2ONNX 简介

Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括 TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。

2 Paddle2ONNX 环境依赖

Paddle2ONNX 本身不依赖其他组件,但是我们建议您在以下环境下使用 Paddle2ONNX :

  • PaddlePaddle == 2.6.0
  • onnxruntime >= 1.10.0

3 安装 Paddle2ONNX

如果您只是想要安装 Paddle2ONNX 且没有二次开发的需求,你可以通过执行以下代码来快速安装 Paddle2ONNX

pip install paddle2onnx

如果你希望对 Paddle2ONNX 进行二次开发,请按照Github 源码安装方式编译Paddle2ONNX。

4 快速使用教程

4.1 获取PaddlePaddle部署模型

Paddle2ONNX 在导出模型时,需要传入部署模型格式,包括两个文件

  • model_name.pdmodel: 表示模型结构
  • model_name.pdiparams: 表示模型参数

4.2 调整Paddle模型

如果对Paddle模型的输入输出需要做调整,可以前往Paddle 相关工具查看教程。

4.3 使用命令行转换 PaddlePaddle 模型

你可以通过使用命令行并通过以下命令将Paddle模型转换为ONNX模型

paddle2onnx --model_dir saved_inference_model \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file model.onnx

可调整的转换参数如下表:

参数 参数说明
--model_dir 配置包含 Paddle 模型的目录路径
--model_filename [可选] 配置位于 --model_dir 下存储网络结构的文件名
--params_filename [可选] 配置位于 --model_dir 下存储模型参数的文件名称
--save_file 指定转换后的模型保存目录路径
--opset_version [可选] 配置转换为 ONNX 的 OpSet 版本,目前支持 7~16 等多个版本,默认为 9
--enable_onnx_checker [可选] 配置是否检查导出为 ONNX 模型的正确性, 建议打开此开关, 默认为 True
--enable_auto_update_opset [可选] 是否开启 opset version 自动升级功能,当低版本 opset 无法转换时,自动选择更高版本的 opset进行转换, 默认为 True
--deploy_backend [可选] 量化模型部署的推理引擎,支持 onnxruntime/rknn/tensorrt, 默认为 onnxruntime
--save_calibration_file [可选] TensorRT 8.X版本部署量化模型需要读取的 cache 文件的保存路径,默认为 calibration.cache
--version [可选] 查看 paddle2onnx 版本
--external_filename [可选] 当导出的 ONNX 模型大于 2G 时,需要设置 external data 的存储路径,推荐设置为:external_data
--export_fp16_model [可选] 是否将导出的 ONNX 的模型转换为 FP16 格式,并用 ONNXRuntime-GPU 加速推理,默认为 False
--custom_ops [可选] 将 Paddle OP 导出为 ONNX 的 Custom OP,例如:--custom_ops '{"paddle_op":"onnx_op"},默认为 {}

4.4 裁剪ONNX

如果你需要调整 ONNX 模型,请参考 ONNX 相关工具

4.5 优化ONNX

如你对导出的 ONNX 模型有优化的需求,推荐使用 onnx-simplifier,也可使用如下命令对模型进行优化

pip install onnxslim
onnxslim model.onnx slim.onnx

5 代码贡献

繁荣的生态需要大家的携手共建,开发者可以参考 Paddle2ONNX 贡献指南 来为 Paddle2ONNX 贡献代码。

6 License

Provided under the Apache-2.0 license.

7 感谢捐赠

  • 感谢 PaddlePaddle 团队提供服务器支持 Paddle2ONNX 的 CI 建设。
  • 感谢社区用户 chenwhql, luotao1, goocody, jeff41404, jzhang553, ZhengBicheng 于2024年03月28日向 Paddle2ONNX PMC 捐赠共 10000 元人名币用于 Paddle2ONNX 的发展。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

paddle2onnx-1.2.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view hashes)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

paddle2onnx-1.2.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view hashes)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

paddle2onnx-1.2.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view hashes)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

paddle2onnx-1.2.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view hashes)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

paddle2onnx-1.2.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view hashes)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

paddle2onnx-1.2.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view hashes)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

paddle2onnx-1.2.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view hashes)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

paddle2onnx-1.2.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view hashes)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

paddle2onnx-1.2.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB view hashes)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

paddle2onnx-1.2.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view hashes)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page