Awesome Image Classification toolkits based on PaddlePaddle
Project description
paddleclas package
Get started quickly
install package
install by pypi
pip install paddleclas==2.0.0rc1
build own whl package and install
python3 setup.py bdist_wheel
pip3 install dist/paddleclas-x.x.x-py3-none-any.whl
1. Quick Start
- Assign
image_file='docs/images/whl/demo.jpg'
, Use inference model that Paddle providesmodel_name='ResNet50'
Here is demo.jpg
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False,use_tensorrt=False)
image_file='docs/images/whl/demo.jpg'
result=clas.predict(image_file)
print(result)
>>> result
[{'filename': '/Users/mac/Downloads/PaddleClas/docs/images/whl/demo.jpg', 'class_ids': [8], 'scores': [0.9796774], 'label_names': ['hen']}]
- Using command line interactive programming
paddleclas --model_name='ResNet50' --image_file='docs/images/whl/demo.jpg'
>>> result
**********/Users/mac/Downloads/PaddleClas/docs/images/whl/demo.jpg**********
[{'filename': '/Users/mac/Downloads/PaddleClas/docs/images/whl/demo.jpg', 'class_ids': [8], 'scores': [0.9796774], 'label_names': ['hen']}]
2. Definition of Parameters
- model_name(str): model's name. If not assigning
model_file
andparams_file
, you can assign this param. If using inference model based on ImageNet1k provided by Paddle, set as default='ResNet50'. - image_file(str): image's path. Support assigning single local image, internet image and folder containing series of images. Also Support numpy.ndarray.
- use_gpu(bool): Whether to use GPU or not, defalut=False。
- use_tensorrt(bool): whether to open tensorrt or not. Using it can greatly promote predict preformance, default=False.
- resize_short(int): resize the minima between height and width into resize_short(int), default=256
- resize(int): resize image into resize(int), default=224.
- normalize(bool): whether normalize image or not, default=True.
- batch_size(int): batch number, default=1.
- model_file(str): path of inference.pdmodel. If not assign this param,you need assign
model_name
for downloading. - params_file(str): path of inference.pdiparams. If not assign this param,you need assign
model_name
for downloading. - ir_optim(bool): whether enable IR optimization or not, default=True.
- gpu_mem(int): GPU memory usages,default=8000。
- enable_profile(bool): whether enable profile or not,default=False.
- top_k(int): Assign top_k, default=1.
- enable_mkldnn(bool): whether enable MKLDNN or not, default=False.
- cpu_num_threads(int): Assign number of cpu threads, default=10.
- label_name_path(str): Assign path of label_name_dict you use. If using your own training model, you can assign this param. If using inference model based on ImageNet1k provided by Paddle, you may not assign this param.Defaults take ImageNet1k's label name.
- pre_label_image(bool): whether prelabel or not, default=False.
- pre_label_out_idr(str): If prelabeling, the path of output.
3. Different Usages of Codes
We provide two ways to use: 1. Python interative programming 2. Bash command line programming
- check
help
information
paddleclas -h
- Use user-specified model, you need to assign model's path
model_file
and parameters's pathparams_file
python
from paddleclas import PaddleClas
clas = PaddleClas(model_file='user-specified model path',
params_file='parmas path', use_gpu=False, use_tensorrt=False)
image_file = ''
result=clas.predict(image_file)
print(result)
bash
paddleclas --model_file='user-specified model path' --params_file='parmas path' --image_file='image path'
- Use inference model which PaddlePaddle provides to predict, you need to choose one of model when initializing PaddleClas to assign
model_name
. You may not assignmodel_file
, and the model you chosen will be download inBASE_INFERENCE_MODEL_DIR
,which will be saved in folder named bymodel_name
,avoiding overlay different inference model.
python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False, use_tensorrt=False)
image_file = ''
result=clas.predict(image_file)
print(result)
bash
paddleclas --model_name='ResNet50' --image_file='image path'
- You can assign input as format
np.ndarray
which has been preprocessed--image_file=np.ndarray
.
python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False, use_tensorrt=False)
image_file =np.ndarray # image_file 可指定为前缀是https的网络图片,也可指定为本地图片
result=clas.predict(image_file)
bash
paddleclas --model_name='ResNet50' --image_file=np.ndarray
- You can assign
image_file
as a folder path containing series of images, also can assigntop_k
.
python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False, use_tensorrt=False,top_k=5)
image_file = '' # it can be image_file folder path which contains all of images you want to predict.
result=clas.predict(image_file)
print(result)
bash
paddleclas --model_name='ResNet50' --image_file='image path' --top_k=5
- You can assign
--pre_label_image=True
,--pre_label_out_idr= './output_pre_label/'
.Then images will be copied into folder named by top-1 class_id.
python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False, use_tensorrt=False,top_k=5, pre_label_image=True,pre_label_out_idr='./output_pre_label/')
image_file = '' # it can be image_file folder path which contains all of images you want to predict.
result=clas.predict(image_file)
print(result)
bash
paddleclas --model_name='ResNet50' --image_file='image path' --top_k=5 --pre_label_image=True --pre_label_out_idr='./output_pre_label/'
- You can assign
--label_name_path
as your own label_dict_file, format should be as(class_idclass_name<\n>).
0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
......
- If you use inference model that Paddle provides, you do not need assign
label_name_path
. Program will takeppcls/utils/imagenet1k_label_list.txt
as defaults. If you hope using your own training model, you can providelabel_name_path
outputing 'label_name' and scores, otherwise no 'label_name' in output information.
python
from paddleclas import PaddleClas
clas = PaddleClas(model_file= './inference.pdmodel',params_file = './inference.pdiparams',label_name_path='./ppcls/utils/imagenet1k_label_list.txt',use_gpu=False)
image_file = '' # it can be image_file folder path which contains all of images you want to predict.
result=clas.predict(image_file)
print(result)
bash
paddleclas --model_file= './inference.pdmodel' --params_file = './inference.pdiparams' --image_file='image path' --label_name_path='./ppcls/utils/imagenet1k_label_list.txt'
python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50',use_gpu=False)
image_file = '' # it can be image_file folder path which contains all of images you want to predict.
result=clas.predict(image_file)
print(result)
bash
paddleclas --model_name='ResNet50' --image_file='image path'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
paddleclas-2.0.0rc2.tar.gz
(34.8 kB
view details)
File details
Details for the file paddleclas-2.0.0rc2.tar.gz
.
File metadata
- Download URL: paddleclas-2.0.0rc2.tar.gz
- Upload date:
- Size: 34.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6280e1abd9e72b26e8dfd99ee549ef48162fd13e0cf560319e5f22cab5a5f857 |
|
MD5 | 5a0ff6e1de529d8763d0facd2538d825 |
|
BLAKE2b-256 | e67831340088d11c6163d8eceadf9195abf11b1844f8df479b9d19a953cdd68d |