Skip to main content

A treasure chest for visual recognition powered by PaddlePaddle.

Project description

PaddleClas wheel package

PaddleClas supports Python wheel package for prediction. At present, PaddleClas wheel supports image classification including ImagetNet1k models and PULC models, but does not support mainbody detection, feature extraction and vector retrieval.


Catalogue

1. Installation

  • installing from pypi
pip3 install paddleclas==2.2.1
  • build own whl package and install
python3 setup.py bdist_wheel
pip3 install dist/*

2. Quick Start

2.1 ImageNet1k models

Using the ResNet50 model provided by PaddleClas, the following image('docs/images/inference_deployment/whl_demo.jpg') as an example.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))

Note: PaddleClas.predict() is a generator. Therefore you need to use next() or for call it iteratively. It will perform a prediction by batch_size and return the prediction result(s) when called. Examples of returned results are as follows:

>>> result
[{'class_ids': [8, 7, 136, 80, 84], 'scores': [0.79368, 0.16329, 0.01853, 0.00959, 0.00239], 'label_names': ['hen', 'cock', 'European gallinule, Porphyrio porphyrio', 'black grouse', 'peacock']}]
  • CLI
paddleclas --model_name=ResNet50  --infer_imgs="docs/images/inference_deployment/whl_demo.jpg"
>>> result
filename: docs/images/inference_deployment/whl_demo.jpg, top-5, class_ids: [8, 7, 136, 80, 84], scores: [0.79368, 0.16329, 0.01853, 0.00959, 0.00239], label_names: ['hen', 'cock', 'European gallinule, Porphyrio porphyrio', 'black grouse', 'peacock']
Predict complete!

2.2 PULC models

PULC integrates various state-of-the-art algorithms such as backbone network, data augmentation and distillation, etc., and finally can automatically obtain a lightweight and high-precision image classification model.

PaddleClas provides a series of test cases, which contain demos of different scenes about people, cars, OCR, etc. Click here to download the data.

Prection using the PULC "Human Exists Classification" model provided by PaddleClas:

  • Python
import paddleclas
model = paddleclas.PaddleClas(model_name="person_exists")
result = model.predict(input_data="pulc_demo_imgs/person_exists/objects365_01780782.jpg")
print(next(result))
>>> result
[{'class_ids': [0], 'scores': [0.9955421453341842], 'label_names': ['nobody'], 'filename': 'pulc_demo_imgs/person_exists/objects365_01780782.jpg'}]

Nobody means there is no one in the image, someone means there is someone in the image. Therefore, the prediction result indicates that there is no one in the figure.

Note: model.predict() is a generator, so next() or for is needed to call it. This would to predict by batch that length is batch_size, default by 1. You can specify the argument batch_size and model_name when instantiating PaddleClas object, for example: model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2). Please refer to Supported Model List for the supported model list.

  • CLI
paddleclas --model_name=person_exists --infer_imgs=pulc_demo_imgs/person_exists/objects365_01780782.jpg
>>> result
class_ids: [0], scores: [0.9955421453341842], label_names: ['nobody'], filename: pulc_demo_imgs/person_exists/objects365_01780782.jpg
Predict complete!

Note: The "--infer_imgs" argument specify the image(s) to be predict, and you can also specify a directoy contains images. If use other model, you can specify the --model_name argument. Please refer to Supported Model List for the supported model list.

Supported Model List

The name of PULC series models are as follows:

Name Intro
person_exists Human Exists Classification
person_attribute Pedestrian Attribute Classification
safety_helmet Classification of Wheather Wearing Safety Helmet
traffic_sign Traffic Sign Classification
vehicle_attribute Vehicle Attribute Classification
car_exists Car Exists Classification
text_image_orientation Text Image Orientation Classification
textline_orientation Text-line Orientation Classification
language_classification Language Classification

Please refer to Human Exists ClassificationPedestrian Attribute ClassificationClassification of Wheather Wearing Safety HelmetTraffic Sign ClassificationVehicle Attribute ClassificationCar Exists ClassificationText Image Orientation ClassificationText-line Orientation ClassificationLanguage Classification for more information about different scenarios.

3. Definition of Parameters

The following parameters can be specified in Command Line or used as parameters of the constructor when instantiating the PaddleClas object in Python.

  • model_name(str): If using inference model based on ImageNet1k provided by Paddle, please specify the model's name by the parameter.
  • inference_model_dir(str): Local model files directory, which is valid when model_name is not specified. The directory should contain inference.pdmodel and inference.pdiparams.
  • infer_imgs(str): The path of image to be predicted, or the directory containing the image files, or the URL of the image from Internet.
  • use_gpu(bool): Whether to use GPU or not.
  • gpu_mem(int): GPU memory usages.
  • use_tensorrt(bool): Whether to open TensorRT or not. Using it can greatly promote predict preformance.
  • enable_mkldnn(bool): Whether enable MKLDNN or not.
  • cpu_num_threads(int): Assign number of cpu threads, valid when --use_gpu is False and --enable_mkldnn is True.
  • batch_size(int): Batch size.
  • resize_short(int): Resize the minima between height and width into resize_short.
  • crop_size(int): Center crop image to crop_size.
  • topk(int): Print (return) the topk prediction results when Topk postprocess is used.
  • threshold(float): The threshold of ThreshOutput when postprocess is used.
  • class_id_map_file(str): The mapping file between class ID and label.
  • save_dir(str): The directory to save the prediction results that can be used as pre-label.

Note: If you want to use Transformer series models, such as DeiT_***_384, ViT_***_384, etc., please pay attention to the input size of model, and need to set resize_short=384, resize=384. The following is a demo.

  • CLI:
from paddleclas import PaddleClas, get_default_confg
paddleclas --model_name=ViT_base_patch16_384 --infer_imgs='docs/images/inference_deployment/whl_demo.jpg' --resize_short=384 --crop_size=384
  • Python:
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ViT_base_patch16_384', resize_short=384, crop_size=384)

4. Usage

PaddleClas provides two ways to use:

  1. Python interative programming;
  2. Bash command line programming.

4.1 View help information

  • CLI
paddleclas -h

4.2 Prediction using inference model provide by PaddleClas

You can use the inference model provided by PaddleClas to predict, and only need to specify model_name. In this case, PaddleClas will automatically download files of specified model and save them in the directory ~/.paddleclas/.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg'

4.3 Prediction using local model files

You can use the local model files trained by yourself to predict, and only need to specify inference_model_dir. Note that the directory must contain inference.pdmodel and inference.pdiparams.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(inference_model_dir='./inference/')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --inference_model_dir='./inference/' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg'

4.4 Prediction by batch

You can predict by batch, only need to specify batch_size when infer_imgs is direcotry contain image files.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', batch_size=2)
infer_imgs = 'docs/images/'
result=clas.predict(infer_imgs)
for r in result:
    print(r)
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --batch_size 2

4.5 Prediction of Internet image

You can predict the Internet image, only need to specify URL of Internet image by infer_imgs. In this case, the image file will be downloaded and saved in the directory ~/.paddleclas/images/.

  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'https://raw.githubusercontent.com/paddlepaddle/paddleclas/release/2.2/docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='https://raw.githubusercontent.com/paddlepaddle/paddleclas/release/2.2/docs/images/inference_deployment/whl_demo.jpg'

4.6 Prediction of NumPy.array format image

In Python code, you can predict the NumPy.array format image, only need to use the infer_imgs to transfer variable of image data. Note that the models in PaddleClas only support to predict 3 channels image data, and channels order is RGB.

  • python
import cv2
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = cv2.imread("docs/en/inference_deployment/whl_deploy_en.md")[:, :, ::-1]
result=clas.predict(infer_imgs)
print(next(result))

4.7 Save the prediction result(s)

You can save the prediction result(s) as pre-label, only need to use pre_label_out_dir to specify the directory to save.

  • python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'

4.8 Specify the mapping between class id and label name

You can specify the mapping between class id and label name, only need to use class_id_map_file to specify the mapping file. PaddleClas uses ImageNet1K's mapping by default.

The content format of mapping file shall be:

class_id<space>class_name<\n>

For example:

0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
......
  • Python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
  • CLI
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg' --class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

paddleclas-2.4.3-py3-none-any.whl (326.7 kB view details)

Uploaded Python 3

File details

Details for the file paddleclas-2.4.3-py3-none-any.whl.

File metadata

  • Download URL: paddleclas-2.4.3-py3-none-any.whl
  • Upload date:
  • Size: 326.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.0

File hashes

Hashes for paddleclas-2.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 01fc4fba12bdcb17d21e7e7785388e6262dd4060b6ef134f8445957f2f175b0d
MD5 bc99ac1eb0aa1fbebc257dc08227d9a4
BLAKE2b-256 e0f21d4fd838b82ee314847093e35c6b4addba8713c14280313094e0be233ca3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page