Awesome OCR toolkits based on PaddlePaddle (8.6M ultra-lightweight pre-trained model, support training and deployment among server, mobile, embeded and IoT devices
Project description
paddleocr package
Get started quickly
install package
install by pypi
pip install paddleocr
build own whl package and install
python setup.py bdist_wheel
pip install dist/paddleocr-0.0.3-py3-none-any.whl
1. Use by code
- detection and recognition
from paddleocr import PaddleOCR,draw_ocr
ocr = PaddleOCR() # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
print(line)
# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
Output will be a list, each item contains bounding box, text and recognition confidence
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
Visualization of results
- only detection
from paddleocr import PaddleOCR,draw_ocr
ocr = PaddleOCR() # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
print(line)
# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
Output will be a list, each item only contains bounding box
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
......
Visualization of results
- only recognition
from paddleocr import PaddleOCR
ocr = PaddleOCR() # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path,det=False)
for line in result:
print(line)
Output will be a list, each item contains text and recognition confidence
['PAIN', 0.990372]
Use by command line
show help information
paddleocr -h
- detection and recognition
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg
Output will be a list, each item contains bounding box, text and recognition confidence
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
- only detection
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --rec false
Output will be a list, each item only contains bounding box
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
......
- only recognition
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --det false
Output will be a list, each item contains text and recognition confidence
['PAIN', 0.990372]
Use custom model
When the built-in model cannot meet the needs, you need to use your own trained model. First, refer to the first section of inference_en.md to convert your det and rec model to inference model, and then use it as follows
1. Use by code
from paddleocr import PaddleOCR,draw_ocr
# The path of detection and recognition model must contain model and params files
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}',rec_model_dir='{your_rec_model_dir}å')
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
print(line)
# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
Use by command line
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir}
Parameter Description
Parameter | Description | Default value |
---|---|---|
use_gpu | use GPU or not | TRUE |
gpu_mem | GPU memory size used for initialization | 8000M |
image_dir | The images path or folder path for predicting when used by the command line | |
det_algorithm | Type of detection algorithm selected | DB |
det_model_dir | the text detection inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to ~/.paddleocr/det ; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path |
None |
det_max_side_len | The maximum size of the long side of the image. When the long side exceeds this value, the long side will be resized to this size, and the short side will be scaled proportionally | 960 |
det_db_thresh | Binarization threshold value of DB output map | 0.3 |
det_db_box_thresh | The threshold value of the DB output box. Boxes score lower than this value will be discarded | 0.5 |
det_db_unclip_ratio | The expanded ratio of DB output box | 2 |
det_east_score_thresh | Binarization threshold value of EAST output map | 0.8 |
det_east_cover_thresh | The threshold value of the EAST output box. Boxes score lower than this value will be discarded | 0.1 |
det_east_nms_thresh | The NMS threshold value of EAST model output box | 0.2 |
rec_algorithm | Type of recognition algorithm selected | CRNN |
rec_model_dir | the text recognition inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to ~/.paddleocr/rec ; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path |
None |
rec_image_shape | image shape of recognition algorithm | "3,32,320" |
rec_char_type | Character type of recognition algorithm, Chinese (ch) or English (en) | ch |
rec_batch_num | When performing recognition, the batchsize of forward images | 30 |
max_text_length | The maximum text length that the recognition algorithm can recognize | 25 |
rec_char_dict_path | the alphabet path which needs to be modified to your own path when rec_model_Name use mode 2 |
./ppocr/utils/ppocr_keys_v1.txt |
use_space_char | Whether to recognize spaces | TRUE |
enable_mkldnn | Whether to enable mkldnn | FALSE |
det | Enable detction when ppocr.ocr func exec |
TRUE |
rec | Enable detction when ppocr.ocr func exec |
TRUE |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file paddleocr-0.0.3.1-py3-none-any.whl
.
File metadata
- Download URL: paddleocr-0.0.3.1-py3-none-any.whl
- Upload date:
- Size: 251.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.4.2 requests/2.24.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e404ea574d98a146d561f7161e3c662bbb47cb5eddf96fa4cf06785c81d9829c |
|
MD5 | a412758d3cb9f78e7a4df82f48c5a28c |
|
BLAKE2b-256 | 8fb9159f92e7d7f1141732b047bf29d5855bdf18f927aa605e143a0e98c046d5 |