Skip to main content

Awesome OCR toolkits based on PaddlePaddle (8.6M ultra-lightweight pre-trained model, support training and deployment among server, mobile, embeded and IoT devices

Project description

paddleocr package

Get started quickly

install package

install by pypi

pip install paddleocr

build own whl package and install

python3 setup.py bdist_wheel
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x is the version of paddleocr

1. Use by code

  • detection classification and recognition
from paddleocr import PaddleOCR,draw_ocr
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `ch`, `en`, `french`, `german`, `korean`, `japan`
# to switch the language model in order.
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)


# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

Output will be a list, each item contains bounding box, text and recognition confidence

[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......

Visualization of results

  • detection and recognition
from paddleocr import PaddleOCR,draw_ocr
ocr = PaddleOCR(lang='en') # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

Output will be a list, each item contains bounding box, text and recognition confidence

[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......

Visualization of results

  • classification and recognition
from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path, det=False, cls=True)
for line in result:
    print(line)

Output will be a list, each item contains recognition text and confidence

['PAIN', 0.990372]
  • only detection
from paddleocr import PaddleOCR,draw_ocr
ocr = PaddleOCR() # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
    print(line)

# draw result
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

Output will be a list, each item only contains bounding box

[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
......

Visualization of results

  • only recognition
from paddleocr import PaddleOCR
ocr = PaddleOCR(lang='en') # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path, det=False, cls=False)
for line in result:
    print(line)

Output will be a list, each item contains recognition text and confidence

['PAIN', 0.990372]
  • only classification
from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path, det=False, rec=False, cls=True)
for line in result:
    print(line)

Output will be a list, each item contains classification result and confidence

['0', 0.99999964]

Use by command line

show help information

paddleocr -h
  • detection classification and recognition
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --use_angle_cls true -cls true --lang en

Output will be a list, each item contains bounding box, text and recognition confidence

[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
  • detection and recognition
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --lang en

Output will be a list, each item contains bounding box, text and recognition confidence

[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
  • classification and recognition
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --use_angle_cls true -cls true --det false --lang en

Output will be a list, each item contains text and recognition confidence

['PAIN', 0.990372]
  • only detection
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --rec false

Output will be a list, each item only contains bounding box

[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
......
  • only recognition
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --det false --cls false --lang en

Output will be a list, each item contains text and recognition confidence

['PAIN', 0.990372]
  • only classification
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --use_angle_cls true -cls true --det false --rec false

Output will be a list, each item contains classification result and confidence

['0', 0.99999964]

Use custom model

When the built-in model cannot meet the needs, you need to use your own trained model. First, refer to the first section of inference_en.md to convert your det and rec model to inference model, and then use it as follows

1. Use by code

from paddleocr import PaddleOCR,draw_ocr
# The path of detection and recognition model must contain model and params files
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}', rec_model_dir='{your_rec_model_dir}', rec_char_dict_path='{your_rec_char_dict_path}', cls_model_dir='{your_cls_model_dir}', use_angle_cls=True)
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

Use by command line

paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir} --rec_char_dict_path {your_rec_char_dict_path} --cls_model_dir {your_cls_model_dir} --use_angle_cls true --cls true

Parameter Description

Parameter Description Default value
use_gpu use GPU or not TRUE
gpu_mem GPU memory size used for initialization 8000M
image_dir The images path or folder path for predicting when used by the command line
det_algorithm Type of detection algorithm selected DB
det_model_dir the text detection inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to ~/.paddleocr/det; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path None
det_max_side_len The maximum size of the long side of the image. When the long side exceeds this value, the long side will be resized to this size, and the short side will be scaled proportionally 960
det_db_thresh Binarization threshold value of DB output map 0.3
det_db_box_thresh The threshold value of the DB output box. Boxes score lower than this value will be discarded 0.5
det_db_unclip_ratio The expanded ratio of DB output box 2
det_east_score_thresh Binarization threshold value of EAST output map 0.8
det_east_cover_thresh The threshold value of the EAST output box. Boxes score lower than this value will be discarded 0.1
det_east_nms_thresh The NMS threshold value of EAST model output box 0.2
rec_algorithm Type of recognition algorithm selected CRNN
rec_model_dir the text recognition inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to ~/.paddleocr/rec; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path None
rec_image_shape image shape of recognition algorithm "3,32,320"
rec_char_type Character type of recognition algorithm, Chinese (ch) or English (en) ch
rec_batch_num When performing recognition, the batchsize of forward images 30
max_text_length The maximum text length that the recognition algorithm can recognize 25
rec_char_dict_path the alphabet path which needs to be modified to your own path when rec_model_Name use mode 2 ./ppocr/utils/ppocr_keys_v1.txt
use_space_char Whether to recognize spaces TRUE
use_angle_cls Whether to load classification model FALSE
cls_model_dir the classification inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to ~/.paddleocr/cls; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path None
cls_image_shape image shape of classification algorithm "3,48,192"
label_list label list of classification algorithm ['0','180']
cls_batch_num When performing classification, the batchsize of forward images 30
enable_mkldnn Whether to enable mkldnn FALSE
use_zero_copy_run Whether to forward by zero_copy_run FALSE
lang The support language, now only Chinese(ch)、English(en)、French(french)、German(german)、Korean(korean)、Japanese(japan) are supported ch
det Enable detction when ppocr.ocr func exec TRUE
rec Enable recognition when ppocr.ocr func exec TRUE
cls Enable classification when ppocr.ocr func exec FALSE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

paddleocr-1.0.1-py3-none-any.whl (452.3 kB view details)

Uploaded Python 3

File details

Details for the file paddleocr-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: paddleocr-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 452.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.7

File hashes

Hashes for paddleocr-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bef995d873fc7a7270accf935fcc55506305c3716590b2300f4a6f90ca496668
MD5 75a48e2ee9b2ef6a412ac4be05f806ae
BLAKE2b-256 f2b47917ccf641643ec22e359d4f222949bfd4fb52d9c9dc9a7316753d8adc3a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page