Awesome Video toolkits based on PaddlePaddle
Project description
简体中文 | English
paddlevideo package
Get started quickly
install package
install by pypi
pip install paddlevideo==0.0.1
note: you may have difficulty in installing opencv-python,you can try:
pip install opencv-python==4.2.0.32 -i https://pypi.doubanio.com/simple
build own whl package and install
python3 setup.py bdist_wheel
pip3 install dist/paddlevideo-x.x.x-py3-none-any.whl
1. Quick Start
- Assign
video_file='data/example.mp4'
, Use inference model that Paddle providesmodel_name='ppTSM'
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False,use_tensorrt=False)
video_file='data/example.mp4.'
result=clas.predict(video_file)
print(result)
>>> result
[{'videoname': 'data/example.mp4', 'class_ids': [5], 'scores': [0.999963], 'label_names': ['archery']}]
- Using command line interactive programming
ppvideo --model_name='ppTSM' --video_file='data/example.mp4'
>>> result
**********data/example.mp4**********
[{'videoname': 'data/example.mp4', 'class_ids': [5], 'scores': [0.999963], 'label_names': ['archery']}]
2. Definition of Parameters
- model_name(str): model's name. If not assigning
model_file
andparams_file
, you can assign this param. If using inference model based on Kinectics-400 provided by Paddle, set as default='ppTSM'. - video_file(str): video's path. Support assigning single local video, internet video and folder containing series of videos. Also Support numpy.ndarray.
- use_gpu(bool): Whether to use GPU or not, defalut=False.
- num_seg(int): Number of segments while using the sample strategies proposed in TSN.
- seg_len(int): Number of frames for each segment.
- short_size(int): resize the minima between height and width into resize_short(int), default=256.
- target_size(int): resize image into resize(int), default=224.
- normalize(bool): whether normalize image or not, default=True.
- model_file(str): path of inference.pdmodel. If not assign this param,you need assign
model_name
for downloading. - params_file(str): path of inference.pdiparams. If not assign this param,you need assign
model_name
for downloading. - batch_size(int): batch number, default=1.
- use_fp16(bool): Whether to use float16 in memory or not, default=False.
- use_tensorrt(bool): whether to open tensorrt or not. Using it can greatly promote predict preformance, default=False.
- gpu_mem(int): GPU memory usages,default=8000.
- top_k(int): Assign top_k, default=1.
- enable_mkldnn(bool): whether enable MKLDNN or not, default=False.
3. Different Usages of Codes
We provide two ways to use: 1. Python interative programming 2. Bash command line programming
- check
help
information
ppvideo -h
- Use user-specified model, you need to assign model's path
model_file
and parameters's pathparams_file
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_file='user-specified model path',
params_file='parmas path', use_gpu=False, use_tensorrt=False)
video_file = ''
result=clas.predict(video_file)
print(result)
bash
ppvideo --model_file='user-specified model path' --params_file='parmas path' --video_file='video path'
- Use inference model which PaddlePaddle provides to predict, you need to choose one of model when initializing ppvideo to assign
model_name
. You may not assignmodel_file
, and the model you chosen will be download inBASE_INFERENCE_MODEL_DIR
,which will be saved in folder named bymodel_name
,avoiding overlay different inference model.
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False, use_tensorrt=False)
video_file = ''
result=clas.predict(video_file)
print(result)
bash
ppvideo --model_name='ppTSM' --video_file='video path'
- You can assign input as format
np.ndarray
which has been preprocessed--video_file=np.ndarray
.
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False, use_tensorrt=False)
video_file =np.ndarray
result=clas.predict(video_file)
bash
ppvideo --model_name='ppTSM' --video_file=np.ndarray
- You can assign
video_file
as a folder path containing series of videos, also can assigntop_k
.
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False, use_tensorrt=False,top_k=5)
video_file = '' # it can be video_file folder path which contains all of videos you want to predict.
result=clas.predict(video_file)
print(result)
bash
paddleclas --model_name='ResNet50' --video_file='video path' --top_k=5
- You can assign
--label_name_path
as your own label_dict_file, format should be as(class_idclass_name<\n>).
0 abseiling
1 air_drumming
2 answering_questions
3 applauding
4 applying_cream
5 archery
......
- If you use inference model that Paddle provides, you do not need assign
label_name_path
. Program will takedata/k400/Kinetics-400_label_list.txt
as defaults. If you hope using your own training model, you can providelabel_name_path
outputing 'label_name' and scores, otherwise no 'label_name' in output information.
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_file= './inference.pdmodel',params_file = './inference.pdiparams',label_name_path='./data/k400/Kinetics-400_label_list.txt',use_gpu=False)
video_file = '' # it can be video_file folder path which contains all of videos you want to predict.
result=clas.predict(video_file)
print(result)
bash
ppvideo --model_file= './inference.pdmodel' --params_file = './inference.pdiparams' --video_file='video path' --label_name_path='./data/k400/Kinetics-400_label_list.txt'
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False)
video_file = '' # it can be video_file folder path which contains all of videos you want to predict.
result=clas.predict(video_file)
print(result)
bash
ppvideo --model_name='ppTSM' --video_file='video path'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
paddlevideo-0.0.1-py3-none-any.whl
(146.7 kB
view details)
File details
Details for the file paddlevideo-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: paddlevideo-0.0.1-py3-none-any.whl
- Upload date:
- Size: 146.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5c4b337852e77165972c84f9f3519b4f826fcd2cc5c67ef4d690e9be337b325c |
|
MD5 | b25baf745fef030734a5b95f152d21d4 |
|
BLAKE2b-256 | 2873bb064930f6fe9adfc74c47f8fe4d8c7045cb8d0625ccb1b053375f693246 |