Skip to main content

Awesome Video toolkits based on PaddlePaddle

Project description

简体中文 | English

paddlevideo package

Get started quickly

install package

install by pypi

pip install paddlevideo==0.0.1

note: you may have difficulty in installing opencv-python,you can try:

pip install opencv-python==4.2.0.32 -i https://pypi.doubanio.com/simple

build own whl package and install

python3 setup.py bdist_wheel
pip3 install dist/paddlevideo-x.x.x-py3-none-any.whl

1. Quick Start

  • Assign video_file='data/example.mp4', Use inference model that Paddle provides model_name='ppTSM'
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False,use_tensorrt=False)
video_file='data/example.mp4.'
result=clas.predict(video_file)
print(result)
    >>> result
    [{'videoname': 'data/example.mp4', 'class_ids': [5], 'scores': [0.999963], 'label_names': ['archery']}]
  • Using command line interactive programming
ppvideo --model_name='ppTSM' --video_file='data/example.mp4'
    >>> result
    **********data/example.mp4**********
    [{'videoname': 'data/example.mp4', 'class_ids': [5], 'scores': [0.999963], 'label_names': ['archery']}]

2. Definition of Parameters

  • model_name(str): model's name. If not assigning model_fileandparams_file, you can assign this param. If using inference model based on Kinectics-400 provided by Paddle, set as default='ppTSM'.
  • video_file(str): video's path. Support assigning single local video, internet video and folder containing series of videos. Also Support numpy.ndarray.
  • use_gpu(bool): Whether to use GPU or not, defalut=False.
  • num_seg(int): Number of segments while using the sample strategies proposed in TSN.
  • seg_len(int): Number of frames for each segment.
  • short_size(int): resize the minima between height and width into resize_short(int), default=256.
  • target_size(int): resize image into resize(int), default=224.
  • normalize(bool): whether normalize image or not, default=True.
  • model_file(str): path of inference.pdmodel. If not assign this param,you need assign model_name for downloading.
  • params_file(str): path of inference.pdiparams. If not assign this param,you need assign model_name for downloading.
  • batch_size(int): batch number, default=1.
  • use_fp16(bool): Whether to use float16 in memory or not, default=False.
  • use_tensorrt(bool): whether to open tensorrt or not. Using it can greatly promote predict preformance, default=False.
  • gpu_mem(int): GPU memory usages,default=8000.
  • top_k(int): Assign top_k, default=1.
  • enable_mkldnn(bool): whether enable MKLDNN or not, default=False.

3. Different Usages of Codes

We provide two ways to use: 1. Python interative programming 2. Bash command line programming

  • check help information
ppvideo -h
  • Use user-specified model, you need to assign model's path model_file and parameters's pathparams_file
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_file='user-specified model path',
    params_file='parmas path', use_gpu=False, use_tensorrt=False)
video_file = ''
result=clas.predict(video_file)
print(result)
bash
ppvideo --model_file='user-specified model path' --params_file='parmas path' --video_file='video path'
  • Use inference model which PaddlePaddle provides to predict, you need to choose one of model when initializing ppvideo to assign model_name. You may not assign model_file , and the model you chosen will be download in BASE_INFERENCE_MODEL_DIR ,which will be saved in folder named by model_name,avoiding overlay different inference model.
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False, use_tensorrt=False)
video_file = ''
result=clas.predict(video_file)
print(result)
bash
ppvideo --model_name='ppTSM' --video_file='video path'
  • You can assign input as formatnp.ndarray which has been preprocessed --video_file=np.ndarray.
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False, use_tensorrt=False)
video_file =np.ndarray
result=clas.predict(video_file)
bash
ppvideo --model_name='ppTSM' --video_file=np.ndarray
  • You can assign video_file as a folder path containing series of videos, also can assign top_k.
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False, use_tensorrt=False,top_k=5)
video_file = '' # it can be video_file folder path which contains all of videos you want to predict.
result=clas.predict(video_file)
print(result)
bash
paddleclas --model_name='ResNet50' --video_file='video path' --top_k=5
  • You can assign --label_name_path as your own label_dict_file, format should be as(class_idclass_name<\n>).
0 abseiling
1 air_drumming
2 answering_questions
3 applauding
4 applying_cream
5 archery
......
  • If you use inference model that Paddle provides, you do not need assign label_name_path. Program will take data/k400/Kinetics-400_label_list.txt as defaults. If you hope using your own training model, you can provide label_name_path outputing 'label_name' and scores, otherwise no 'label_name' in output information.
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_file= './inference.pdmodel',params_file = './inference.pdiparams',label_name_path='./data/k400/Kinetics-400_label_list.txt',use_gpu=False)
video_file = '' # it can be video_file folder path which contains all of videos you want to predict.
result=clas.predict(video_file)
print(result)
bash
ppvideo --model_file= './inference.pdmodel' --params_file = './inference.pdiparams' --video_file='video path' --label_name_path='./data/k400/Kinetics-400_label_list.txt'
python
from ppvideo import PaddleVideo
clas = PaddleVideo(model_name='ppTSM',use_gpu=False)
video_file = '' # it can be video_file folder path which contains all of videos you want to predict.
result=clas.predict(video_file)
print(result)
bash
ppvideo --model_name='ppTSM' --video_file='video path'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

paddlevideo-0.0.1-py3-none-any.whl (146.7 kB view details)

Uploaded Python 3

File details

Details for the file paddlevideo-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: paddlevideo-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 146.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.5

File hashes

Hashes for paddlevideo-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5c4b337852e77165972c84f9f3519b4f826fcd2cc5c67ef4d690e9be337b325c
MD5 b25baf745fef030734a5b95f152d21d4
BLAKE2b-256 2873bb064930f6fe9adfc74c47f8fe4d8c7045cb8d0625ccb1b053375f693246

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page