Skip to main content

Generate neighbor list for the particles in a periodic boundary cell.

Project description

pairlist

Generates the pair list of atoms that are closer to each other than the given threshold under the periodic boundary conditions.

version 0.5.1.1

Usage

See pairlist.h for the function definition and pairlist-test.c for usage.

Python API is served in pairlist.py. The API document is here.

To find the neighbors in a face-centered cubic lattice of size 10x10x10 on a MacBook Air 2021 (Apple Silicon),

$ python benchmark.py
INFO crude: Neighboring pair list by a crude double loop.
INFO crude: 18024 ms
INFO crude: end.
24000 pairs
INFO numpyish: Neighboring pair list by numpy fancy array.
INFO numpyish: 741 ms
INFO numpyish: end.
24000.0 pairs
INFO pairlist_py: Neighboring pair list by pairlist in pure python.
INFO pairlist_py: 125 ms
INFO pairlist_py: end.
24000 pairs
INFO pairlist_c: Neighboring pair list by pairlist in c.
INFO pairlist_c: end.
INFO pairlist_c: 16 ms
24000 pairs
import pairlist as pl
from fcc import FaceCenteredCubic
from logging import getLogger, basicConfig, INFO, DEBUG
from decorator import timeit, banner
import numpy as np
from pairlist import pairs_py, pairs2_py


basicConfig(level=INFO, format="%(levelname)s %(message)s")
logger = getLogger()
logger.debug("Debug mode.")


@banner
@timeit
def crude(lattice, cell, rc=1.1):
    "Neighboring pair list by a crude double loop."
    rc2 = rc**2
    count = 0
    for i in range(len(lattice)):
        for j in range(i):
            d = lattice[i] - lattice[j]
            d -= np.floor(d + 0.5)
            d = d @ cell
            if d @ d < rc2:
                count += 1
    return count


@banner
@timeit
def numpyish(lattice, cell, rc=1.1):
    "Neighboring pair list by numpy fancy array."
    # cross-differences
    M = lattice[:, None, :] - lattice[None, :, :]
    # wrap
    M -= np.floor(M + 0.5)
    # in absolute coordinate
    M = M @ cell
    d = (M * M).sum(2)
    return d[(d < rc**2) & (0 < d)].shape[0] / 2


@banner
@timeit
def pairlist_py(lattice, cell, rc=1.1):
    "Neighboring pair list by pairlist in pure python."
    count = 0
    for i, j, d in pl.pairs_iter(
        lattice, maxdist=rc, cell=cell, _engine=(pairs_py, pairs2_py)
    ):
        count += 1
    return count


@timeit
@banner
def pairlist_c(lattice, cell, rc=1.1):
    "Neighboring pair list by pairlist in c."
    count = 0
    for i, j, d in pl.pairs_iter(lattice, maxdist=rc, cell=cell):
        count += 1
    return count


lattice, cell = FaceCenteredCubic(10)

print(crude(lattice, cell), "pairs")
print(numpyish(lattice, cell), "pairs")
print(pairlist_py(lattice, cell), "pairs")
print(pairlist_c(lattice, cell), "pairs")

benchmark

Algorithm

A simple cell division algorithm is implemented.

Demo

It requires GenIce to make the test data.

% make test

Requirements

  • python
  • numpy

Bugs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pairlist-0.5.1.2.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

pairlist-0.5.1.2-cp311-cp311-macosx_13_0_arm64.whl (13.8 kB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

File details

Details for the file pairlist-0.5.1.2.tar.gz.

File metadata

  • Download URL: pairlist-0.5.1.2.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.4 Darwin/22.6.0

File hashes

Hashes for pairlist-0.5.1.2.tar.gz
Algorithm Hash digest
SHA256 7add7eb9587f03a0c5df36ee955c553d6f0874629cf89d537db419fa38c705d1
MD5 eeeea30db07dc7f6c5e98ab5c8461973
BLAKE2b-256 940dc111f05f2f2f2e978399f589f1b9afd75f47f0e2722aabac44107daded1e

See more details on using hashes here.

File details

Details for the file pairlist-0.5.1.2-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pairlist-0.5.1.2-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 77157e0d51d8bc7c4e104cd3e45cdbcfcf0f8c4cb2ede98619baed0d7ba191a0
MD5 bf9e83226cab2f1c270ea28d688fc9af
BLAKE2b-256 861cc0dd9314f018788d1f9c035e6add57ad77d9f180dc40d607eaf36205396a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page