Skip to main content

PaIRS - Particle Image Reconstruction Software

Project description

PaIRS-UniNa: Particle Image Reconstruction Software - University of Naples "Federico II"

PaIRS-UniNa is a project developed by the Experimental Thermo Fluid-Dynamics (ETFD) group of University of Naples "Federico II" since 2000. It is aimed to provide fast and efficient tools for digital particle image velocimetry (PIV) analysis in research and industrial applications.

PaIRS-UniNa is based on a C library (PaIRS-PIV) and relies on a graphical user interface (PaIRS) that is developed via PySide6 and makes the use of PaIRS-PIV easy and intuitive. PaIRS-PIV includes several modules that allow to process double-frame or time-resolved 2D planar PIV images as well as stereoscopic and tomographic PIV or Lagrangian particle tracking velocimetry (4D PTV) measurements.

The current release of PaIRS-UniNa features the module for the 2D planar PIV analysis and the stereoscopic PIV analysis and a module for optical calibration of camera systems, namely CalVi.

CalVi is the calibration module of PaIRS-UniNa and allows accurate optical calibration of single and multiple camera bundles with the camera models mostly used in the PIV community: polynomials, rational functions and the pinhole camera model. Among the other features, it supports camera calibration procedures working with unknown positions and orientations of the calibration target and the integration of the pinhole camera model with a refractive correction model for cylindrical geometries (based on ray-tracing and Snell's law).

PaIRS-UniNa is supported by Python 3.9+ and is compatible with all the operating systems, however, the PaIRS-PIV library relies on OpemMP library, which must be installed on the macOS platform. On the other side, PaIRS requires, among other packages, SciPy and matplotlib.

For further information, please visit PaIRS website.

What's new in PaIRS-UniNa 0.2.3

Fixed bug in the functionality for replicating processes with changed input folders introduced in version v0.2.2.

Fixed bug in the compatibility check for the common region in disparity and stereoscopic PIV analysis steps.

New features in the previous version 0.2.2:

Critical: Fixed critical errors in the calculation of Reynolds stresses for stereoscopic PIV processes. Please consider reviewing the results from processes executed with version 0.2.1, as the w'w', u'w', and v'w' stresses were incorrectly calculated.

Introduced the "Laser Equation Plane" box in the Output tab to specify the initial attempt in the disparity step or to independently assign the constant values of the laser plane during the stereoscopic PIV step.

Improved stability and interface performance.

The guide of PaIRS-UniNa v0.2 is now available. Discover all the information you need for advanced software usage at www.pairs.unina.it.

Installation

All PaIRS-UniNa wheels are distributed under LGPLv3+ licences. The installation can be performed with:

python -m pip install PaIRS-UniNa

MacOS requirements

Normally the OpenMP library is not preinstalled in MacOs. A possible way to install this library is:

curl -O https://mac.r-project.org/openmp/openmp-12.0.1-darwin20-Release.tar.gz
sudo tar fvxz openmp-12.0.1-darwin20-Release.tar.gz -C /

Run

From command prompt

It is possible to run PaIRS directly from the command prompt with:

python -m PaIRS_UniNa

PaIRS automatically saves and stores its configuration upon exit and starts from the latter at the next run. If any trouble with loading the last configuration file (saved in the package folder) occurs, the user is suggested to execute a clean run of PaIRS via the following command:

python -m PaIRS_UniNa -c

A debug mode is also available for developers. It can be accessed via:

python -m PaIRS_UniNa -d

After the above command, the user will be asked to enter a password. Interested users can ask the password to the authors by sending an email to: etfd@unina.it. The debug mode can be turned on/off at any time via the keyboard sequence: Alt+Shift+D.

On macOS and Linux python must be replaced by python3.

In Python environment

In a Python environment, to run PaIRS the following commands can be used :

>>> from PaIRS_UniNa import PaIRS
>>> PaIRS.run()

For clean mode:

>>> PaIRS.cleanRun()

while for debug mode:

>>> PaIRS.debugRun()

User guide

For more details about PaIRS usage, see our user guide.

Authors and contact details

Gerardo Paolillo - Research Associate, Department of Industrial Engineering, University of Naples "Federico II", via Claudio, 21, 80125, Napoli, Italy

Tommaso Astarita - Full professor, Department of Industrial Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125, Napoli, Italy

email: etfd@unina.it

Related works

Please cite the following works if you intend to use PaIRS-UniNa for your purposes:

[1] Astarita, T., & Cardone, G. (2005). "Analysis of interpolation schemes for image deformation methods in PIV". Experiments in Fluids, 38(2), 233-243. doi: 10.1007/s00348-004-0902-3

[2] Astarita, T. (2006). "Analysis of interpolation schemes for image deformation methods in PIV: effect of noise on the accuracy and spatial resolution". Experiments in Fluids, vol. 40 (6): 977-987. doi: 10.1007/s00348-006-0139-4

[3] Astarita, T. (2007). "Analysis of weighting windows for image deformation methods in PIV." Experiments in Fluids, 43(6), 859-872. doi: 10.1007/s00348-007-0314-2

[4] Astarita, T. (2008). "Analysis of velocity interpolation schemes for image deformation methods in PIV". Experiments in Fluids, 45(2), 257-266. doi: 10.1007/s00348-008-0475-7

[5] Astarita, T. (2009). "Adaptive space resolution for PIV". Experiments in Fluids, 46(6), 1115-1123. doi: 10.1007/s00348-009-0618-5

[6] Giordano, R., & Astarita, T. (2009). "Spatial resolution of the Stereo PIV technique". Experiments in Fluids, 46(4), 643-658. doi: 10.1007/s00348-008-0589-y

Please cite the following works if you intend to use CalVi for your purposes:

[1] Paolillo, G., & Astarita, T. (2020). "Perspective camera model with refraction correction for optical velocimetry measurements in complex geometries". IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6), 3185-3196. doi: 10.1109/TPAMI.2020.3046467.

[2] Paolillo, G., & Astarita, T. (2021). "On the PIV/PTV uncertainty related to calibration of camera systems with refractive surfaces". Measurement Science and Technology, 32(9), 094006. doi: 10.1088/1361-6501/abf3fc.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

PaIRS_UniNa-0.2.3-cp312-cp312-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

PaIRS_UniNa-0.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

PaIRS_UniNa-0.2.3-cp312-cp312-macosx_10_9_universal2.whl (11.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

PaIRS_UniNa-0.2.3-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

PaIRS_UniNa-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PaIRS_UniNa-0.2.3-cp311-cp311-macosx_10_9_universal2.whl (11.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PaIRS_UniNa-0.2.3-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

PaIRS_UniNa-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PaIRS_UniNa-0.2.3-cp310-cp310-macosx_10_9_universal2.whl (11.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PaIRS_UniNa-0.2.3-cp39-cp39-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

PaIRS_UniNa-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PaIRS_UniNa-0.2.3-cp39-cp39-macosx_10_9_universal2.whl (11.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file PaIRS_UniNa-0.2.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cdfe32249990abb24988e7d53dd9672fb9a73e36b2b485fd1ecead3737ed46ca
MD5 b3655c20f7e1e7a0324250249b756c81
BLAKE2b-256 a96c0496142b0ebe9a642f64132e602df44e4cb604e8b5530e14458d6406f98d

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f698c5695fe51c6637cc1c1713430a4b36d2267fa3b61032f42da4d12dde2efa
MD5 ac19e4c145dc16cec32cf0af0a3a12f2
BLAKE2b-256 ccc039ce11eed893e3c7b3ac6ec23ea9ed50e084a3368efeb450459cd3c701a1

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 067be4ec2147b3d6b54b5ed80ac903a45558e23e6dece99aca41c6bb7767c53f
MD5 851d63801ec1fbd5ffdbdbf15943cee9
BLAKE2b-256 2502eb32c93c7df59297863b75e952704a4c29faf6605a414ab5584829a090f9

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 929143cb33a40eaf0795b61ba8b17bce05ee700b90ceca20c6bb3c1444fb8118
MD5 8496c1a5954ca7066c54f22a581a9ae1
BLAKE2b-256 ef3ffc561478fdd61364fcfbd4e692044130e5be2ac762fc2a6753b9afb114a1

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7dabc6ca218ae985390fee87c2cea713f1e1a6445e532325f04c5dcf32450e90
MD5 2161b96420bdc74f7b1d4dec978fb921
BLAKE2b-256 69a1c946895e2d1c389363744dbbe28c43c1b5b511187035b8cfa98022cdc684

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5fae558f2eb776083c44302615c552bc7c0fe410dab22b754d9cf33e65854add
MD5 db42458937388a467914c207a4b373d8
BLAKE2b-256 6b3aff02ec1e640de2953c0d4cde8d321a46114a947de61daf80e3e5918a4e50

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3e9ca9496abec5d772a70b2cd8782a264fb81ce0b406cfd1870daa9abd5f2f9a
MD5 4d7d8bb8d1b89b657caf94933ccc5578
BLAKE2b-256 1141fe80864eb62692255614f0b8fa59f5cb61016855cb5d4ee62439f9500fea

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4438499f872cc2458ac7842cfc74994d656a7694f3bd1fa723b1c7e597f252e7
MD5 92de049cae5d8d7010c6707999ebce65
BLAKE2b-256 1c842b63cf7bb985668b38a93a921cabd8c0df64eed3c3cbd8aacb2084431cb4

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ec2c65394bcc4f836e8dd90d91390590e9af51f82037707e2348f96b8f608129
MD5 cdd1b925299623bd8edaf229bc56db97
BLAKE2b-256 7686fd68858c95df8a7cab6d9090d0f670f114ec21655224c78119f2f13e7403

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fee2fa73276f22d34544a2ec8260ace73daa039caa194846c0d5dbe323894f32
MD5 a71fe9f5b1bb387db96a179768d57660
BLAKE2b-256 adc7344bd09dfefda514f0ff571ad6557dd7bb1094504052bee982075ddb8487

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bbcb1f966a641b1bac37eca3288da452ec971af9d6038279f299e2e54876a825
MD5 0c8d77a11cf132edfcb5ccc3cb77169d
BLAKE2b-256 2a09a43cdfa5dc76792c1f38309b1bf448e82868bfc438feca6e2b2d0bc7da52

See more details on using hashes here.

File details

Details for the file PaIRS_UniNa-0.2.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PaIRS_UniNa-0.2.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c8b6a0814d68aa27b46ade1f0fcf9cb015bcd7eb50ae5460f93c5a00a2eb500a
MD5 4339bddc810d4c2c68f77387081f2085
BLAKE2b-256 d1d957209de17f670ee4e46bfd6d1727a8fa5d27cdddadb993809e88a158f678

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page