Skip to main content

Palanteer scripting module

Project description

Look into Palanteer and get an omniscient view of your program

Palanteer is a set of lean and efficient tools to improve the quality of software, for C++ and Python programs.

Simple code instrumentation, mostly automatic in Python, delivers powerful features:

  • Collection of meaningful atomic events on timings, memory, locks wait and usage, context switches, data values..
  • Visual and interactive observation of record: timeline, plot, histograms, flame graph...
  • Remote command call and events observation can be scripted in Python: deep testing has never been simpler
  • C++:
    • ultra-light single-header cross-platform instrumentation library
    • compile-time selection of groups of instrumentation
    • compile-time hashing of static string to minimize their cost
    • compile-time striping of all instrumentation static strings
    • enhanced assertions, stack trace dump...
  • Python:
    • Automatic instrumentation of functions enter/leave, memory allocations, raised exceptions, garbage collection runs
    • Support of multithread, coroutines, asyncio/gevent

Palanteer is an efficient, lean and comprehensive solution for better and enjoyable software development!

Usage

This scripting module processes the events sent by instrumented programs, independently of their language (Python or C++).

Typical usages are:

  • Tests based on stimulations/configuration with CLI and events observation, as data can also be traced
  • Evaluation of the program performance
  • Monitoring
  • ...

Below is a simple example of a Python program instrumented with Palanteer and generating 100 000 random integers.
The range can be remotely configured with a user-defined Palanteer CLI.

#! /usr/bin/env python3
import sys
import random
from palanteer import *

globalMinValue, globalMaxValue =  0, 10

# Handler (=implementation) of the example CLI, which sets the range
def setBoundsCliHandler(minValue, maxValue):              # 2 parameters (both integer) as declared
    global globalMinValue, globalMaxValue
    if minValue>maxValue:                                 # Case where the CLI execution fails (non null status). The text answer contains some information about it
        return 1, "Minimum value (%d) shall be lower than the maximum value (%d)" % (minValue, maxValue)

    # Modify the state of the program
    globalMinValue, globalMaxValue = minValue, maxValue
    # CLI execution was successful (null status)
    return 0, ""


def main(argv):
    global globalMinValue, globalMaxValue

    plInitAndStart("example")                             # Start the instrumentation
    plDeclareThread("Main")                               # Declare the current thread as "Main", so that it can be identified more easily in the script
    plRegisterCli(setBoundsCliHandler, "config:setRange", "min=int max=int", "Sets the value bounds of the random generator")  # Declare the CLI
    plFreezePoint()                                       # Add a freeze point here to be able to configure the program at a controlled moment

    plBegin("Generate some random values")
    for i in range(100000):
        value = int(globalMinValue + random.random()*(globalMaxValue+1-globalMinValue))
        plData("random data", value)                      # Here are the "useful" values
    plEnd("")                                             # Shortcut for plEnd("Generate some random values")

    plStopAndUninit()                                     # Stop and uninitialize the instrumentation

# Bootstrap
if __name__ == "__main__":
    main(sys.argv)

The Python scripting module can remotely control this program, in particular:

  • call the setBoundsCliHandler to change the configuration
  • temporarily halt the program at the freeze point
  • see all "random data" values and the timing of the scope event "Generate some random values"
#! /usr/bin/env python3
import sys
import palanteer_scripting as ps

def main(argv):
    if len(sys.argv)<2:
        print("Error: missing parameters (the program to launch)")
        sys.exit(1)

    # Initialize the scripting module
    ps.initialize_scripting()

    # Enable the freeze mode so that we can safely configure the program once stopped on its freeze point
    ps.program_set_freeze_mode(True)

    # Launch the program under test
    ps.process_launch(sys.argv[1], args=sys.argv[2:])
    # From here, we are connected to the remote program

    # Configure the selection of events to receive
    my_selection = ps.EvtSpec(thread="Main", events=["random data"]) # Thread "Main", only the event "random data"
    ps.data_configure_events(my_selection)

    # Configure the program
    status, response = ps.program_cli("config:setRange min=300 max=500")
    if status!=0:
        print("Error when configuring: %s\nKeeping original settings." % response)

    # Disable the freeze mode so that the program resumes its execution
    ps.program_set_freeze_mode(False)

    # Collect the events as long as the program is alive or we got some events in the last round
    qty, sum_values, min_value, max_value, has_worked = 0, 0, 1e9, 0, True
    while ps.process_is_running() or has_worked:
        has_worked = False
        for e in ps.data_collect_events(timeout_sec=1.):  # Loop on received events, per batch
            has_worked, qty, sum_values, min_value, max_value = True, qty+1, sum_values+e.value, min(min_value, e.value), max(max_value, e.value)

    # Display the result of the processed collection of data
    print("Quantity: %d\nMinimum : %d\nAverage : %d\nMaximum : %d" % (qty, min_value, sum_values/max(qty,1), max_value))

    # Cleaning
    ps.process_stop()            # Kills the launched process, if still running
    ps.uninitialize_scripting()  # Uninitialize the scripting module


# Bootstrap
if __name__ == "__main__":
    main(sys.argv)

The execution of this last script, with the first one as parameter, gives the following output:

> ./remoteScript.py example.py
Quantity: 100000
Minimum : 300
Average : 400
Maximum : 500

Details can be found here.

Installation of the scripting module

Directly from the PyPI storage (from sources on Linux, binary on Windows)

pip install palanteer_scripting

Directly from GitHub sources

pip install "git+https://github.com/dfeneyrou/palanteer#egg=palanteer_scripting&subdirectory=server/scripting"

From locally retrieved sources

Get the sources:

git clone https://github.com/dfeneyrou/palanteer
cd palanteer
mkdir build
cd build

Build on Linux:

cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc) install

Build on Windows:
(vcvarsall.bat or equivalent shall be called beforehand, so that the MSVC compiler is accessible)

cmake .. -DCMAKE_BUILD_TYPE=Release -G "NMake Makefiles"
nmake install

Important!

To be useful, this module requires an "instrumentation side" in the program under analysis (C++ or Python):

  • For Python language, the instrumentation module is available on PyPI or from the github sources
  • For C++ language, the instrumentation library is a single header file available in the github sources

Also, a graphical viewer is available for non-scripted analysis of the program behaviors.

NOTE: It is strongly recommended to have a matching version between the scripting module and the instrumentation sides

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

palanteer_scripting-0.7.1.tar.gz (546.0 kB view details)

Uploaded Source

Built Distributions

palanteer_scripting-0.7.1-cp311-cp311-win_amd64.whl (264.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

palanteer_scripting-0.7.1-cp310-cp310-win_amd64.whl (264.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

palanteer_scripting-0.7.1-cp39-cp39-win_amd64.whl (264.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

palanteer_scripting-0.7.1-cp38-cp38-win_amd64.whl (264.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

palanteer_scripting-0.7.1-cp37-cp37m-win_amd64.whl (264.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

File details

Details for the file palanteer_scripting-0.7.1.tar.gz.

File metadata

  • Download URL: palanteer_scripting-0.7.1.tar.gz
  • Upload date:
  • Size: 546.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.7

File hashes

Hashes for palanteer_scripting-0.7.1.tar.gz
Algorithm Hash digest
SHA256 8297891bb1ebd5ac63c7374ba67aa2f7d19295302fff0be4db718740efcdf073
MD5 f9321c9d2a29a10d010b184b71c4da35
BLAKE2b-256 d6332399a51ae43851dfbdade42e418e6b98e40309cc4ccc70fdd601759d4f53

See more details on using hashes here.

File details

Details for the file palanteer_scripting-0.7.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for palanteer_scripting-0.7.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6621121c3db179a2fc29f6a766b00dc6b439183bc590e5febad5a3a3981520a7
MD5 e96dc81274c87d4ca39377d00aecebd0
BLAKE2b-256 24d150e4e9adb49b1fcea12725354db6520c87a3c98d2d5ee84b19a325798168

See more details on using hashes here.

File details

Details for the file palanteer_scripting-0.7.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for palanteer_scripting-0.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4f95268bb4c4889bd7207eedc2cf232d9f72bec5b2bcae043f8108b81920709f
MD5 151e7004c10609255852eef69925f1f9
BLAKE2b-256 dc1f29f67281c8bac84e610d0256bc92479572459beb6c8865b7de37ff15ec3b

See more details on using hashes here.

File details

Details for the file palanteer_scripting-0.7.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for palanteer_scripting-0.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c4637caa8b5a6c9d80cea4dbf77d05356e67118bbc42a50e6713c8eac0e56eef
MD5 7561443612f8bc587049df7781acd4ec
BLAKE2b-256 9186e6e45161949502c801cd8415de99106ce82d81041ff9c00be03eb1480dcf

See more details on using hashes here.

File details

Details for the file palanteer_scripting-0.7.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for palanteer_scripting-0.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 28ee4ce9c12be52963175f29705074198a11f887c99a3194022489db19687ca3
MD5 53f0c89fb5332f5b8d05f7c271dc9825
BLAKE2b-256 c2835e7a8169882924c3150ad176d6c5309f6d93e6adf12739cbb7830123df4b

See more details on using hashes here.

File details

Details for the file palanteer_scripting-0.7.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for palanteer_scripting-0.7.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4ffa24416f1a34fe991f1af2e9ee7e2edcb0e63776824f936ae0b66a1aa73ce0
MD5 6fca84f7c2b702e1043c39f47ae26cae
BLAKE2b-256 ecc679dc3a0896c93e09460c6f4e59d10f8f2000e196379421894959c8718802

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page