Skip to main content

panda-model allows the offline use of the Model class from libfranka in Python and C++.

Project description

panda-model

robot_model logo

GitHub Workflow Status Read the Docs GitHub PyPI PyPI - Python Version

panda-model allows the offline use of the Model class from libfranka without a connection to the master control unit. To do this, a shared library needs to be downloaded from an FCI enabled Franka Emika master control unit using the included tools.

To get startet install panda-model as described below and check out the documentation as well as the examples.

Installation

Using pip

pip install panda_model

From Source

Python

Clone the repository and install the package using pip by executing the following from the root directory:

pip install .

This will install the command line script panda-model-download as well as Python bindings for the modified Model class.

C++

To use the model in C++ you can build the necessary library by running:

mkdir build && cd build
cmake .. -DBUILD_CPP=ON
cmake --build .

You can then install the library using sudo make install or by building a deb package:

cpack -G DEB
sudo dpkg -i panda_model*.deb

Requirements

Building from source requires POCO C++ libraries and Eigen3. You can install the necessary requirements on Ubuntu by running:

sudo apt-get install libpoco-dev libeigen3-dev

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

panda-model-0.2.0.tar.gz (79.3 kB view details)

Uploaded Source

Built Distributions

panda_model-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

panda_model-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

panda_model-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

panda_model-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

panda_model-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file panda-model-0.2.0.tar.gz.

File metadata

  • Download URL: panda-model-0.2.0.tar.gz
  • Upload date:
  • Size: 79.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for panda-model-0.2.0.tar.gz
Algorithm Hash digest
SHA256 50a4bb11f35d93ed509055e59702b3d69f2cd845b10fdb40948ccc1119c01d45
MD5 f5056951b3874329e5a5def1e9a2b4d3
BLAKE2b-256 d82220fdc7dd5473773ae26fd8714259287a4e32ca671e59e6b017bc3e948790

See more details on using hashes here.

File details

Details for the file panda_model-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for panda_model-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d74fe9ed20dbf41d4349e79d61cb331cd13634b64b57aefa02622621e6af459a
MD5 0022699d2152a53dbfd2991760af91ba
BLAKE2b-256 352750b356b3d68482421ed37df6060c3d6ab93959c90b9407c1c1d72a271712

See more details on using hashes here.

File details

Details for the file panda_model-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for panda_model-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1569ba87feb2cff13fdf18de8a378c50509177b2e2583b16502b1acdefa80373
MD5 0f4c3ca31f73ff982a5ddcb0ce79dbb1
BLAKE2b-256 e579d7f3a6d671e39ee3d2df3c1a9930ec6d3f6ad5bdf01b6d9a2d08157567cd

See more details on using hashes here.

File details

Details for the file panda_model-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for panda_model-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67d1869504ee327e7b0905c64a51cbc924b316f7852a35baa34e926d0ded8078
MD5 1e2ad9670d18f9acecfb402bc1c345e8
BLAKE2b-256 2a7aa4e1265a2a005b3f1880e3cbed5bc9f506bbf9c9fa249c0a3f4574f87ce9

See more details on using hashes here.

File details

Details for the file panda_model-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for panda_model-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6947a6a3de8dbc2168fff732e00236e5e4464d5427b67f090815e2255c83fcc8
MD5 3b5039796caca5b5e39d446e51042fa0
BLAKE2b-256 e73c233e3bafd7e8750327ca0c184da77bdcb598e294c7e3d3696b25244a6e7f

See more details on using hashes here.

File details

Details for the file panda_model-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for panda_model-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 411035d491a1a1e7e27e522275320925d24b2daea0e304e8c939a4c55068ee70
MD5 07545b72f287a766a1b5dd6334ac0c31
BLAKE2b-256 16bbe28d5db4b4bb046d23013cc2a0e200635018a5dbbd9590ba79ac2f5097af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page