Skip to main content

Python library for network analysis

Project description

Pandana is a Python library for network analysis that uses contraction hierarchies to calculate super-fast travel accessibility metrics and shortest paths. The numerical code is in C++.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandana-0.7.tar.gz (295.0 kB view details)

Uploaded Source

Built Distributions

pandana-0.7-cp311-cp311-win_amd64.whl (142.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

pandana-0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pandana-0.7-cp311-cp311-macosx_11_0_arm64.whl (150.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pandana-0.7-cp311-cp311-macosx_10_9_x86_64.whl (160.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pandana-0.7-cp310-cp310-win_amd64.whl (141.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

pandana-0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pandana-0.7-cp310-cp310-macosx_11_0_arm64.whl (150.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pandana-0.7-cp310-cp310-macosx_10_9_x86_64.whl (159.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pandana-0.7-cp39-cp39-win_amd64.whl (142.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

pandana-0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pandana-0.7-cp39-cp39-macosx_11_0_arm64.whl (151.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pandana-0.7-cp39-cp39-macosx_10_9_x86_64.whl (160.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pandana-0.7-cp38-cp38-win_amd64.whl (142.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pandana-0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pandana-0.7-cp38-cp38-macosx_11_0_arm64.whl (168.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pandana-0.7-cp38-cp38-macosx_10_9_x86_64.whl (177.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pandana-0.7.tar.gz.

File metadata

  • Download URL: pandana-0.7.tar.gz
  • Upload date:
  • Size: 295.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pandana-0.7.tar.gz
Algorithm Hash digest
SHA256 416a5998ba9ae64fe546186f430e705b8a59bb5ff71c195fd64d734f9c70e795
MD5 938c546ded1efb344543519778ed4c40
BLAKE2b-256 6d8a5b2fad57442322a48900d6bf63f0034998d99cc55facedf7a5b5e0f97063

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pandana-0.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 142.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pandana-0.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 389448a55c4186355574e4716865813c0ad07fd28ba9620b99160cb431174e9b
MD5 1c3360dc79cd4bfffed86102aec57998
BLAKE2b-256 1c3ce47937f310d227417781371a5f124159019a055be00afecc1acc9ee71c31

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12458e0251f1beed38418dc035937438ba170e070673067ad9cd968c4ba74106
MD5 0d5a675ead53acffb9221533b2c088ef
BLAKE2b-256 99fc053a274d6e1f42da63e893b8822e7befc3fa3c8d222db93d51d6079f9ef1

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 daa8c46eaa5e11d58a785bd89f2c677cfa7695f0a93ea89f466ab187fd48eadd
MD5 26bab84e6d27eff006b47e6e825638a3
BLAKE2b-256 f6e3ba33c20b84df2b769eabafa9c133bd54bfef33dbc77b38bbabf9fab88f4a

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 32f87b79cf5ca0f7976c0e14be6947be7fa2b6ee00074e70e1400a97772e4d8e
MD5 c8305655ce71f8f9cbfec5479462523c
BLAKE2b-256 ddb3b0ab43a87f2bd411b5e8f3fb8704efb0bf7b37959c8714fda42c42060bc4

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pandana-0.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 141.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pandana-0.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f7954c3f587d56e964ef3fa50776202348930acb69fea628ee87f210f144f358
MD5 da65778825bd8d0759abaf222dcac488
BLAKE2b-256 a53ece65f6f098daeafc67f1aec68695995363c3c9325d86cb4086d395187149

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4d98183d460b148d211a61ccf00dc6c57ca376ab6ddda45cc410c924322800c
MD5 deeb031c86a96e21d3e6d11fb131e750
BLAKE2b-256 e64e42e37acae9b341184341d46307db70b5152d8e5d30874d741f52131e874c

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a0f8527cceb4757591b0f8d48491b5f7e322df82a702a58f22ad203c103271c8
MD5 79a418f9d8ecd72a8aeb9dc278b13598
BLAKE2b-256 85ece39ac495ced97fc2f38a89e96fd4bef5e58b695e92e26c3817d06611dc78

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9bd2ac88098fc834deb47029d4edcf3b5be785f530a256b37bb436c00a80800
MD5 9c03cfb1edb90ca8b5604d2ca262aedc
BLAKE2b-256 989a6974aea2d9e2096c49c94c541e5c4167c8a2f2fdae2df95799c13f6158f1

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pandana-0.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 142.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pandana-0.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4e6efa5a2641d51256cd289df1367068eb48362a22ac9ff385a27898cec98b2f
MD5 ebc2f892e80a418b5219a3b95d5a3d3e
BLAKE2b-256 ae9f99b8728b1582d937acb0bb861c4d7f37bc8cf7adc085f49432c689cafa6d

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef7f275a48d13084b00a5275f68f37b6446625bfe96c055c762276034ae5c299
MD5 18f22778a189da0a523615706c953bc9
BLAKE2b-256 181f40f6b6bee4ee1477dec84f84db7fc4e6c1b44d455fb562f59e950c707807

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e2498d140cc0740c2ad4a38dfffcb52b88a026a7a9cda010dd04ed61ffd0701
MD5 d58d3dc64ceb8f69ef27034aae4d976c
BLAKE2b-256 26f19d80292f448548d34f5543edb65d573a34d2fe780bea4ffa2d5f3b8fd907

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12b625124ebfc49756cd5f866a8ec246c3a5d8a579e32095ac65fe9d15198931
MD5 22055d3a7eb4e3ed14a9b85c80d89818
BLAKE2b-256 67137761c738f8fe522468377b36a94f2124d3e974b6b90741d229a1c7b9593d

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pandana-0.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 142.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pandana-0.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8513b1b1ee11524ad5ae84cf7731f879dadd8e06be1daa4ebeb1ca090e656d96
MD5 44ce5e593a37a4c54f5f6bbbd8efeef2
BLAKE2b-256 b4a1ca94c1ae72983edc4b58944c94b7442dde29c542bbec31b8f28743919593

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d961e32c59493de3f5a05d27e32abebaf10647d6874eb27ede93bedd30fb4f9f
MD5 24baabf11c359eeb90c1d3d3f0a4508f
BLAKE2b-256 b5435352481766ea5dd9cab1db7c51d35de92e3eb4672cc1529fae95500e82db

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f97056b9d01321b8500a472083e233dd768d4f48496b9fa64b7915cf187f7c17
MD5 6f0c28f72e0af921b636540d7a389c0d
BLAKE2b-256 7184bbeeaabb140803759209dd34216abe9149755195e6d3815dceefdf0b78f2

See more details on using hashes here.

File details

Details for the file pandana-0.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandana-0.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81066c8c0d198162e7d572ef2e5a88c4253920c6e8c619dfb45373a3c6ef336c
MD5 5aaad86c2bb2d430383914b3b378349a
BLAKE2b-256 93916bdc42c2e975bfeda1e956a090c94717490d1d333baef383fde6d033c300

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page