Skip to main content

Accumulate Pandas series

Project description

pandas-accumulate: accumulate values along Pandas series

This package provides one function that allows accumulating values along a Pandas series very similar to cumsum and cumprod but allowing also other operators like |.

Usage examples

cumsum

Replicate cumsum:

>>> import operator
>>> import pandas as pd
>>> from pandas_accumulate import accumulate
>>> s = pd.Series([1, 2, 3])
>>> accumulate(s, operator.add)
0    1
1    3
2    6
dtype: int64

cumulative unique()

Collect the unique values cumulatively. Note: You need to pass an initial value for the accumulation in this example:

>>> s = pd.Series([1,2,1,3,2])
>>> def f(acc, v):
...     return acc | {v}
>>> accumulate(s, f, initial=set())
0          {1}
1       {1, 2}
2       {1, 2}
3    {1, 2, 3}
4    {1, 2, 3}
dtype: object

cumulative nunique()

If you're interested only in the number of unique values, just call len at the end:

>>> accumulate(s, f, initial=set()).map(len)
0    1
1    2
2    2
3    3
4    3
dtype: int64

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_accumulate-0.1.0.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

pandas_accumulate-0.1.0-py3-none-any.whl (3.4 kB view details)

Uploaded Python 3

File details

Details for the file pandas_accumulate-0.1.0.tar.gz.

File metadata

  • Download URL: pandas_accumulate-0.1.0.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for pandas_accumulate-0.1.0.tar.gz
Algorithm Hash digest
SHA256 985ca6c1cf25dc8bd6ebdc745e706f03cb8cdeba4539edd871f09dc5387b1a22
MD5 2f08dbd3a72cc1f4f5ca9493dc98aa66
BLAKE2b-256 52a38d1eff98e5a4a5a6f347aec22f4454819077dca46076f086f643d8b0710b

See more details on using hashes here.

File details

Details for the file pandas_accumulate-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_accumulate-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e6a84d1a2f08b9cb07a42124e46cccc93350fe1542637d6fad607d1b4c7dd33e
MD5 0ff1b43e192348eb0dd3a2243bb5aee5
BLAKE2b-256 225e178709cce4570bd19a0165ab7b1fa56eb859ab84d627d01776f00c646cd9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page