Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

A small Python library for getting character matrices (alignments) into and out of pandas

Project Description

pandas-charm is a small Python package for getting character matrices (alignments) into and out of pandas. Its purpose is to make pandas interoperable with other scientific packages that can be used for dealing with character matrices, like for example BioPython and Dendropy.

With pandas-charm, it is currently possible to convert between the following objects:

  • BioPython MultipleSeqAlignment <-> pandas DataFrame
  • DendroPy CharacterMatrix <-> pandas DataFrame

The code has been tested with Python 2.7, 3.5 and 3.6.

Source repository: https://github.com/jmenglund/pandas-charm


Installation

For most users, the easiest way is probably to install the latest version hosted on PyPI:

$ pip install pandas-charm

The project is hosted at https://github.com/jmenglund/pandas-charm and can also be installed using git:

$ git clone https://github.com/jmenglund/pandas-charm.git
$ cd pandas-charm
$ python setup.py install

You may consider installing pandas-charm and its required Python packages within a virtual environment in order to avoid cluttering your system’s Python path. See for example the environment management system conda or the package virtualenv.

Running tests

Testing is carried out with pytest. The following example shows how you can run the test suite and generate a coverage report:

$ pip install pytest pytest-pep8 dendropy biopython
$ py.test -v --pep8
$ coverage run -m py.test
$ coverage report --include pandascharm.py

Usage

Below are a few examples on how to use pandas-charm. The examples are written with Python 3 code, but pandas-charm should work also with Python 2.7. You need to install BioPython and/or DendroPy manually before you start:

$ pip install biopython
$ pip install dendropy

DendroPy CharacterMatrix to pandas DataFrame

>>> import pandas as pd
>>> import pandascharm as pc
>>> import dendropy
>>> dna_string = '3 5\nt1  TCCAA\nt2  TGCAA\nt3  TG-AA\n'
>>> print(dna_string)
3 5
t1  TCCAA
t2  TGCAA
t3  TG-AA

>>> matrix = dendropy.DnaCharacterMatrix.get_from_string(
...     dna_string, schema='phylip')
>>> df = pc.from_charmatrix(matrix)
>>> df
  t1 t2 t3
0  T  T  T
1  C  G  G
2  C  C  -
3  A  A  A
4  A  A  A

By default, characters are stored as rows and sequences as columns in the DataFrame. If you want rows to hold sequences, just transpose the matrix in pandas:

>>> df.transpose()
    0  1  2  3  4
t1  T  C  C  A  A
t2  T  G  C  A  A
t3  T  G  -  A  A

pandas DataFrame to Dendropy CharacterMatrix

>>> import pandas as pd
>>> import pandascharm as pc
>>> import dendropy
>>> df = pd.DataFrame({
...     't1': ['T', 'C', 'C', 'A', 'A'],
...     't2': ['T', 'G', 'C', 'A', 'A'],
...     't3': ['T', 'G', '-', 'A', 'A']})
>>> df
  t1 t2 t3
0  T  T  T
1  C  G  G
2  C  C  -
3  A  A  A
4  A  A  A

>>> matrix = pc.to_charmatrix(df, data_type='dna')
>>> print(matrix.as_string('phylip'))
3 5
t1  TCCAA
t2  TGCAA
t3  TG-AA

BioPython MultipleSeqAlignment to pandas DataFrame

>>> from io import StringIO
>>> import pandas as pd
>>> import pandascharm as pc
>>> from Bio import AlignIO
>>> dna_string = '3 5\nt1  TCCAA\nt2  TGCAA\nt3  TG-AA\n'
>>> f = StringIO(dna_string)  # make the string a file-like object
>>> alignment = AlignIO.read(f, 'phylip-relaxed')
>>> print(alignment)
SingleLetterAlphabet() alignment with 3 rows and 5 columns
TCCAA t1
TGCAA t2
TG-AA t3
>>> df = pc.from_bioalignment(alignment)
>>> df
  t1 t2 t3
0  T  T  T
1  C  G  G
2  C  C  -
3  A  A  A
4  A  A  A

pandas DataFrame to BioPython MultipleSeqAlignment

>>> import pandas as pd
>>> import pandascharm as pc
>>> import Bio
>>> df = pd.DataFrame({
...     't1': ['T', 'C', 'C', 'A', 'A'],
...     't2': ['T', 'G', 'C', 'A', 'A'],
...     't3': ['T', 'G', '-', 'A', 'A']})
>>> df
  t1 t2 t3
0  T  T  T
1  C  G  G
2  C  C  -
3  A  A  A
4  A  A  A

>>> alignment = pc.to_bioalignment(df, alphabet='generic_dna')
>>> print(alignment)
SingleLetterAlphabet() alignment with 3 rows and 5 columns
TCCAA t1
TGCAA t2
TG-AA t3

The name

pandas-charm got its name from the pandas library plus an acronym for CHARacter Matrix.

License

pandas-charm is distributed under the MIT license.

Citing

If you use results produced with this package in a scientific publication, please just mention the package name in the text and cite the Zenodo DOI of this project:

Choose your preferred citation style in the “Cite as” section on the Zenodo page.

Author

Markus Englund, orcid.org/0000-0003-1688-7112

Release History

Release History

This version
History Node

0.1.3

History Node

0.1.2

History Node

0.1.1

History Node

0.1.0

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pandas_charm-0.1.3-py2.py3-none-any.whl (8.2 kB) Copy SHA256 Checksum SHA256 py2.py3 Wheel Aug 25, 2017
pandas-charm-0.1.3.tar.gz (7.0 kB) Copy SHA256 Checksum SHA256 Source Aug 25, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting