A small Python library for getting character matrices (alignments) into and out of pandas
Project description
pandas-charm is a small Python package for getting character matrices (alignments) into and out of pandas. Its purpose is to make pandas interoperable with other scientific packages that can be used for dealing with character matrices, like for example BioPython and Dendropy.
With pandas-charm, it is currently possible to convert between the following objects:
BioPython MultipleSeqAlignment <-> pandas DataFrame
DendroPy CharacterMatrix <-> pandas DataFrame
The code has been tested with Python 2.7, 3.5 and 3.6.
Source repository: https://github.com/jmenglund/pandas-charm
Installation
For most users, the easiest way is probably to install the latest version hosted on PyPI:
$ pip install pandas-charm
The project is hosted at https://github.com/jmenglund/pandas-charm and can also be installed using git:
$ git clone https://github.com/jmenglund/pandas-charm.git
$ cd pandas-charm
$ python setup.py install
You may consider installing pandas-charm and its required Python packages within a virtual environment in order to avoid cluttering your system’s Python path. See for example the environment management system conda or the package virtualenv.
Running tests
Testing is carried out with pytest. The following example shows how you can run the test suite and generate a coverage report:
$ pip install pytest pytest-pep8 dendropy biopython
$ py.test -v --pep8
$ coverage run -m py.test
$ coverage report --include pandascharm.py
Usage
Below are a few examples on how to use pandas-charm. The examples are written with Python 3 code, but pandas-charm should work also with Python 2.7. You need to install BioPython and/or DendroPy manually before you start:
$ pip install biopython
$ pip install dendropy
DendroPy CharacterMatrix to pandas DataFrame
>>> import pandas as pd
>>> import pandascharm as pc
>>> import dendropy
>>> dna_string = '3 5\nt1 TCCAA\nt2 TGCAA\nt3 TG-AA\n'
>>> print(dna_string)
3 5
t1 TCCAA
t2 TGCAA
t3 TG-AA
>>> matrix = dendropy.DnaCharacterMatrix.get_from_string(
... dna_string, schema='phylip')
>>> df = pc.from_charmatrix(matrix)
>>> df
t1 t2 t3
0 T T T
1 C G G
2 C C -
3 A A A
4 A A A
By default, characters are stored as rows and sequences as columns in the DataFrame. If you want rows to hold sequences, just transpose the matrix in pandas:
>>> df.transpose()
0 1 2 3 4
t1 T C C A A
t2 T G C A A
t3 T G - A A
pandas DataFrame to Dendropy CharacterMatrix
>>> import pandas as pd
>>> import pandascharm as pc
>>> import dendropy
>>> df = pd.DataFrame({
... 't1': ['T', 'C', 'C', 'A', 'A'],
... 't2': ['T', 'G', 'C', 'A', 'A'],
... 't3': ['T', 'G', '-', 'A', 'A']})
>>> df
t1 t2 t3
0 T T T
1 C G G
2 C C -
3 A A A
4 A A A
>>> matrix = pc.to_charmatrix(df, data_type='dna')
>>> print(matrix.as_string('phylip'))
3 5
t1 TCCAA
t2 TGCAA
t3 TG-AA
BioPython MultipleSeqAlignment to pandas DataFrame
>>> from io import StringIO
>>> import pandas as pd
>>> import pandascharm as pc
>>> from Bio import AlignIO
>>> dna_string = '3 5\nt1 TCCAA\nt2 TGCAA\nt3 TG-AA\n'
>>> f = StringIO(dna_string) # make the string a file-like object
>>> alignment = AlignIO.read(f, 'phylip-relaxed')
>>> print(alignment)
SingleLetterAlphabet() alignment with 3 rows and 5 columns
TCCAA t1
TGCAA t2
TG-AA t3
>>> df = pc.from_bioalignment(alignment)
>>> df
t1 t2 t3
0 T T T
1 C G G
2 C C -
3 A A A
4 A A A
pandas DataFrame to BioPython MultipleSeqAlignment
>>> import pandas as pd
>>> import pandascharm as pc
>>> import Bio
>>> df = pd.DataFrame({
... 't1': ['T', 'C', 'C', 'A', 'A'],
... 't2': ['T', 'G', 'C', 'A', 'A'],
... 't3': ['T', 'G', '-', 'A', 'A']})
>>> df
t1 t2 t3
0 T T T
1 C G G
2 C C -
3 A A A
4 A A A
>>> alignment = pc.to_bioalignment(df, alphabet='generic_dna')
>>> print(alignment)
SingleLetterAlphabet() alignment with 3 rows and 5 columns
TCCAA t1
TGCAA t2
TG-AA t3
The name
pandas-charm got its name from the pandas library plus an acronym for CHARacter Matrix.
License
pandas-charm is distributed under the MIT license.
Citing
If you use results produced with this package in a scientific publication, please just mention the package name in the text and cite the Zenodo DOI of this project:
Choose your preferred citation style in the “Cite as” section on the Zenodo page.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pandas-charm-0.1.3.tar.gz
.
File metadata
- Download URL: pandas-charm-0.1.3.tar.gz
- Upload date:
- Size: 7.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0ed773d70ab552a35ef08afb46211d88915bd6c1cde7e9c88eae5d0d64340d2 |
|
MD5 | 69b169a658003c32a9775662c141624b |
|
BLAKE2b-256 | ecbdcf68b1f84b914f8305da5828b97791ee596e443d7631f8dfcb1c72ef308f |
File details
Details for the file pandas_charm-0.1.3-py2.py3-none-any.whl
.
File metadata
- Download URL: pandas_charm-0.1.3-py2.py3-none-any.whl
- Upload date:
- Size: 8.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1e20832e49c6d2537f2c710112e419e6d7e53b783ea183c49cee5e63f12167b4 |
|
MD5 | 0bd0d559966e1e32d14d0e8f1dfb54c9 |
|
BLAKE2b-256 | 653e53fb8916b037a92dfe6518c057065bcb5a234d552e180ab85140502a72ae |