pandas_dataframe_convert is a package to convert Pandas dataframes to other formats.
Project description
Overview
Pandas_dataframe_convert is a library with a command line tool to convert Pandas dataframes to other formats, including csv, excel, json, md, latex, feather and parquet. Useful if you have or write a tool to generate a Pandas dataframe and you want to use the data in some other language.
Install
pip install pandas_dataframe_convert
Usage
The pip install step will put a command line program in your Python scripts directory "dataframe_convert".
usage: dataframe_convert [-h] [-i INFILE] [-o [OFILES [OFILES ...]]] [-x X]
Convert a Pandas dataframe in Pickle format to another format. Mainly useful if you want to use the dataframe in another environment, like R or Julia
optional arguments:
-h, --help show this help message and exit
-i INFILE pickle file containing a pandas dataframe. defaults to standard in if not specified
-o [OFILES [OFILES ...]]
pickle file containing a pandas dataframe. defaults to standard out if not specified. File extension determined the output type. choose an extension of ['pkl', 'ftr', 'json', 'xlsx',
'csv', 'md', 'latex', 'parquet']. Seperate multiple files with spaces.
-x X specify type of output for standard output, one of ['pkl', 'ftr', 'json', 'xlsx', 'csv', 'md', 'latex', 'parquet']
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pandas_dataframe_convert-0.4.tar.gz
.
File metadata
- Download URL: pandas_dataframe_convert-0.4.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.26.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e16ad8f5e0b5e492c3e7101ac886454ff69deaf989c1d9f79197dc550bcaab1 |
|
MD5 | 0ac3f865208c685eefda27a38a0f1b38 |
|
BLAKE2b-256 | 70c73a565c8c212f096d6fc23c95182446896edc62e6c9751098d65360aad372 |