Skip to main content

A tool to process and export datasets in various formats including ORC, Parquet, XML, JSON, HTML, CSV, HDF5, and XLSX.

Project description

PandasDatasetHandler

PandasDatasetHandler is a Python package that provides utility functions for loading, saving, and processing datasets using Pandas DataFrames. It supports multiple file formats for reading and writing, as well as partitioning datasets into smaller chunks.

Features

  • Load datasets from multiple file formats (CSV, JSON, XML, Parquet, ORC, HDF5, etc.).
  • Save datasets in various formats including CSV, JSON, Parquet, ORC, XML, HTML, HDF5, and XLSX.
  • Partition a DataFrame into smaller datasets for efficient processing.
  • Custom error handling for incompatible actions, formats, and processing.

Installation

To install the package, you can use pip:

pip install pandas-dataset-processor

Usage Example

1. Importing the package

import pandas as pd
from pandas_dataset_handler import PandasDatasetHandler

2. Loading a dataset

You can load a dataset using the load_dataset method. It will automatically detect the file format based on the extension.

dataset = PandasDatasetHandler.load_dataset('path/to/your/file.csv')

3. Saving a dataset

To save a DataFrame in a specific file format, use the save_dataset method. You can specify the directory, base filename, and the format (e.g., CSV, JSON, Parquet, etc.).

PandasDatasetHandler.save_dataset(
    dataset=dataset,
    action_type='write',  # action type should be 'write' for saving
    file_format='csv',    # file format such as 'csv', 'json', 'parquet', etc.
    path='./output',      # path where the file will be saved
    base_filename='output_file'  # base filename for the saved file
)

4. Partitioning a dataset

You can partition a dataset into smaller DataFrames for distributed processing or other use cases:

partitions = PandasDatasetHandler.generate_partitioned_datasets(dataset, num_parts=5)

Example Code

import pandas as pd
from pandas_dataset_handler import PandasDatasetHandler

dataset_1 = pd.read_csv('https://raw.githubusercontent.com/JorgeCardona/data-collection-json-csv-sql/refs/heads/main/csv/flight_logs_part_1.csv')
dataset_2 = pd.read_csv('https://raw.githubusercontent.com/JorgeCardona/data-collection-json-csv-sql/refs/heads/main/csv/flight_logs_part_2.csv')

file_formats = ['orc', 'parquet', 'xml', 'json', 'html', 'csv', 'hdf5', 'xlsx']
datasets = [dataset_1, dataset_2]
# Example usage
file_locations = []

# Save datasets in multiple formats
for index_dataset, dataset in enumerate(datasets):
    for index_file, file_format in enumerate(file_formats):
        path = f'./data/dataset_{index_dataset+1}'
        base_filename = f'sample_dataset_{index_file+1}'
        
        file_location = f"{path}/{base_filename}.{file_format}"
        file_locations.append(file_location)
        
        PandasDatasetHandler.save_dataset(
            dataset=dataset,
            action_type='write',
            file_format=file_format,
            path=path,
            base_filename=base_filename
        )
# Load the saved files
for file_location in file_locations:
    PandasDatasetHandler.load_dataset(file_location)
# Generate partitioned datasets
partitions = PandasDatasetHandler.generate_partitioned_datasets(dataset_2, 7)

Error Handling

The package raises custom exceptions for handling different error scenarios:

  • read_orc() is not compatible with Windows OS.
  • IncompatibleActionError: Raised when the specified action is not supported (e.g., trying to read a dataset when an action to write is expected).
  • IncompatibleFormatError: Raised when the file format is not supported.
  • IncompatibleProcessingError: Raised when neither the action nor the format is supported for processing.
  • SaveDatasetError: Raised when an error occurs while saving a dataset in a specific format.
  • LoadDatasetError: Raised when an error occurs while loading a file in a specific format.

Exception Handling Example

try:
    PandasDatasetHandler.save_dataset(dataset, 'write', 'xml', './output', 'example')
except SaveDatasetError as e:
    print(f"Error saving the dataset: {e}")
except IncompatibleFormatError as e:
    print(f"Unsupported format: {e}")
except IncompatibleActionError as e:
    print(f"Unsupported action: {e}")
except IncompatibleProcessingError as e:
    print(f"Processing not supported: {e}")

License

This package is licensed under the MIT License. See the LICENSE file for more details.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-dataset-handler-0.0.2.13.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pandas-dataset-handler-0.0.2.13.tar.gz.

File metadata

File hashes

Hashes for pandas-dataset-handler-0.0.2.13.tar.gz
Algorithm Hash digest
SHA256 e07c00eff8b2e439fee3ee35e6736a01c76bcd4475e365261f20c273f2685349
MD5 7ce9835c2f05adf86e8ad4d29fd731ef
BLAKE2b-256 4175e8ed83e951ab3ad914e979cb9b38540e0274ebbf6446c2122d61913b32cc

See more details on using hashes here.

File details

Details for the file pandas_dataset_handler-0.0.2.13-py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_dataset_handler-0.0.2.13-py3-none-any.whl
Algorithm Hash digest
SHA256 691711dc289c10e3106b39f0950ea29d484e5ea77af2c6fe5dea916ce549fa58
MD5 99145d3ca297a1a1abb23ca18bfe40f4
BLAKE2b-256 9789af681dc871e1daf83bd1ba140df43f1222f5ff7e4bb9f36c668e37e989f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page