Skip to main content

The easy way to write your own Pandas flavor.

Project description

Pandas Flavor

The easy way to write your own flavor of Pandas

Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.

Pandas-flavor extends Pandas' extension API by:

  1. adding support for registering methods as well.
  2. making each of these functions backwards compatible with older versions of Pandas.

What does this mean?

It is now simpler to add custom functionality to Pandas DataFrames and Series.

Import this package. Write a simple python function. Register the function using one of the following decorators.

Why?

Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".

Pandas Flavor allows you add functionality that tailors Pandas to specific fields or use cases.

Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?

Register accessors

Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series that provide extra, specific functionality. For example, pandas.DataFrame.plot is an accessor that provides plotting functionality.

Add an accessor by registering the function with the following decorator and passing the decorator an accessor name.

# my_flavor.py

import pandas_flavor as pf

@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):

  def __init__(self, data):
    self._data = data

  def row_by_value(self, col, value):
    """Slice out row from DataFrame by a value."""
    return self._data[self._data[col] == value].squeeze()

Every dataframe now has this accessor as an attribute.

import my_flavor

# DataFrame.
df = pd.DataFrame(data={
  "x": [10, 20, 25],
  "y": [0, 2, 5]
})

# Print DataFrame
print(df)

# x  y
# 0  10  0
# 1  20  2
# 2  25  5

# Access this functionality
df.my_flavor.row_by_value('x', 10)

# x    10
# y     0
# Name: 0, dtype: int64

To see this in action, check out pdvega, PhyloPandas, and pyjanitor!

Register methods

Using this package, you can attach functions directly to Pandas objects. No intermediate accessor is needed.

# my_flavor.py

import pandas_flavor as pf

@pf.register_dataframe_method
def row_by_value(df, col, value):
    """Slice out row from DataFrame by a value."""
    return df[df[col] == value].squeeze()
import pandas as pd
import my_flavor

# DataFrame.
df = pd.DataFrame(data={
  "x": [10, 20, 25],
  "y": [0, 2, 5]
})

# Print DataFrame
print(df)

# x  y
# 0  10  0
# 1  20  2
# 2  25  5

# Access this functionality
df.row_by_value('x', 10)

# x    10
# y     0
# Name: 0, dtype: int64

Registered methods tracing

The pandas_flavor 0.5.0 release introduced tracing of the registered method calls. Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced to allow visualization of pyjanitor method chains as implemented in pyjviz

Available Methods

  • register_dataframe_method: register a method directly with a pandas DataFrame.
  • register_dataframe_accessor: register an accessor (and it's methods) with a pandas DataFrame.
  • register_series_method: register a methods directly with a pandas Series.
  • register_series_accessor: register an accessor (and it's methods) with a pandas Series.

Installation

You can install using pip:

pip install pandas_flavor

or conda (thanks @ericmjl)!

conda install -c conda-forge pandas-flavor

Contributing

Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this simple guide.

If you have a feature request, please open an issue or submit a PR!

TL;DR

Pandas 0.23 introduced a simpler API for extending Pandas. This API provided two key decorators, register_dataframe_accessor and register_series_accessor, that enable users to register accessors with Pandas DataFrames and Series.

Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering methods directly to Pandas objects might be a desired feature as well.*

*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.

So how does method registration work?

When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) custom accessor class that mimics the behavior of a method by:

  1. inheriting the docstring of your function
  2. overriding the __call__ method to call your function.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_flavor-0.6.0.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

pandas_flavor-0.6.0-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file pandas_flavor-0.6.0.tar.gz.

File metadata

  • Download URL: pandas_flavor-0.6.0.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pandas_flavor-0.6.0.tar.gz
Algorithm Hash digest
SHA256 9fb8735102dcb65dae7ee5cda12b393ca134a909ebcfc0262c5cdc1d79ba007f
MD5 1d44a312474d78742d81c09abc9d2722
BLAKE2b-256 b8d97d35f745a46892478b07c1f196d91b3669a725c46035ac3483d3ecf9e113

See more details on using hashes here.

File details

Details for the file pandas_flavor-0.6.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_flavor-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a32c9e2e0da702579320cf2bd0078cee91807713bc9c65ff522f6b0289899893
MD5 0580737070f450ac806cb555bde0b166
BLAKE2b-256 671abfb5574b215f530c7ac5be684f33d60b299abbebd763c203aa31755f2fb2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page