Skip to main content

Helper functions from the Pandas Illustrated guide

Project description

п»ї# pandas-illustrated

pypi python pytest Coverage Badge Code style: black License

This repo contains code for a number of helper functions mentioned in the Pandas Illustrated guide.

Installation:

pip install pandas-illustrated

Contents

Basic operations:

  • find(s, x, pos=False)
  • findall(s, x, pos=False)
  • insert(dst, pos, value, label, axis=0, ignore_index = False, order=None, allow_duplicates=False, inplace=False)
  • append(dst, value, label = lib.no_default, axis=0, ignore_index = False, order=None, allow_duplicates: bool = False, inplace=False)
  • drop(obj, items=None, like=None, regex=None, axis=None)
  • move(obj, pos, label=None, column=None, index=None, axis=None, reset_index=False)
  • join(dfs, on=None, how="left", suffixes=None)

Visualization improvements:

  • patch_series_repr(footer=True)
  • unpatch_series_repr()
  • sidebyside(*dfs, names=[], index=True, valign="top")
  • sbs = sidebyside

MultiIndex helpers:

  • patch_mi_co()
  • from_dict(d)
  • from_kw(**kwargs)

Locking columns order:

  • locked(obj, level=None, axis=None, categories=None, inplace=False)
  • lock = locked with inplace=True
  • vis_lock(obj, checkmark="вњ“")
  • vis_patch()
  • vis_unpatch()
  • from_product(iterables, sortorder=None, names=lib.no_default, lock=True)

MultiIndex manipulations:

  • get_level(obj, level_id, axis=None)
  • set_level(obj, level_id, labels, name=lib.no_default, axis=None, inplace=False)
  • move_level(obj, src, dst, axis=None, inplace=False, sort=False)
  • insert_level(obj, pos, labels, name=lib.no_default, axis=None, inplace=False, sort=False)
  • drop_level(obj, level_id, axis=None, inplace=False)
  • swap_levels(obj, i: Axis = -2, j: Axis = -1, axis: Axis = None, inplace=False, sort=False)
  • join_levels(obj, name=None, sep="_", axis=None, inplace=False)
  • split_level(obj, names=None, sep="_", axis=None, inplace=False)
  • rename_level(obj, mapping, level_id=None, axis=None, inplace=False)

Usage

find and findall

By default find(series, value) looks for the first occurrence of the given value in a series and returns the corresponsing index label.

>>> import pandas as pd
>>> import pdi

>>> s = pd.Series([4, 2, 4, 6], index=['cat', 'penguin', 'dog', 'butterfly'])

>>> pdi.find(s, 2)
'penguin' 

>>> pdi.find(s, 4)
'cat' 

When the value is not found raises a ValueError.

findall(series, value) returns a (possibly empty) index of all matching occurrences:

>>> pdi.findall(s, 4)
Index(['cat', 'dog'], dtype='object')

With pos=True keyword argument find() and findall() return the positional index instead:

>>> pdi.find(s, 2, pos=True)
1 

>>> pdi.find(s, 4, pos=True)
0

There is a number of ways to find index label for a given value. The most efficient of them are:

†s.index[s.tolist().index(x)]       # faster for Series with less than 1000 elements
†s.index[np.where(s == x)[0][0]]    # faster for Series with over 1000 elements  

find() chooses optimal implementation depending on the series size; findall() always uses the where implementation.

Improving Series Representation

Run pdi.patch_series_repr() to make Series look better:

If you want to display several Series from one cell, call display(s) for each.

Displaying several Pandas objects side vy side

To display several dataframes, series or indices side by side run pdi.sidebyside(s1, s2, ...)

Testing

Run pytest in the project root.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-illustrated-0.6.tar.gz (16.8 kB view details)

Uploaded Source

Built Distribution

pandas_illustrated-0.6-py3-none-any.whl (18.3 kB view details)

Uploaded Python 3

File details

Details for the file pandas-illustrated-0.6.tar.gz.

File metadata

  • Download URL: pandas-illustrated-0.6.tar.gz
  • Upload date:
  • Size: 16.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.1

File hashes

Hashes for pandas-illustrated-0.6.tar.gz
Algorithm Hash digest
SHA256 cae78b65d513ef5c2c3533981ead204ed249d27ee513b4a44cb76ebb9c434847
MD5 c44f750b00110c5224855d514048e856
BLAKE2b-256 fe02b1b2fe9c4238f487e042fad29acba8e6da7cb468edb96b726701289b3318

See more details on using hashes here.

Provenance

File details

Details for the file pandas_illustrated-0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_illustrated-0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 353d56485986a6e77f6b69382ce985513245ae13ec9b967e2a38d3c28fa9a81e
MD5 cbc94c56bf3f5b01c10597f02f8ab908
BLAKE2b-256 acf516f466f2ec822785a540ed64b8ca4f5090cf58c05a1173405a909b96a4a6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page