Skip to main content

Augment pandas DataFrame with methods for machine learning

Project description

The pandas ml common module

This module holds all common extensions and utilities for the pandas ml quant stack. Feel free to study the examples as well.

  • easy joining of data frames with multi indexes
from pandas_ml_common import pd, np

df1 = pd.DataFrame({"a": np.random.random(10), "b": np.random.random(10)})
print(df1.inner_join(df1, prefix_left='A', prefix='B', force_multi_index=True).to_markdown())
('A', 'a') ('A', 'b') ('B', 'a') ('B', 'b')
0 0.907892 0.726913 0.907892 0.726913
1 0.602275 0.134278 0.602275 0.134278
2 0.264399 0.207429 0.264399 0.207429
3 0.559751 0.816759 0.559751 0.816759
4 0.951172 0.797524 0.951172 0.797524
5 0.504332 0.51996 0.504332 0.51996
6 0.765235 0.17908 0.765235 0.17908
7 0.388691 0.644103 0.388691 0.644103
8 0.663636 0.678879 0.663636 0.678879
9 0.291603 0.0164627 0.291603 0.0164627
  • access columns with regex
df4 = pd.DataFrame({"a_22_a": np.random.random(1), "b_21_b": np.random.random(1)})
df4._[r'.*\d+_.']
a_22_a b_21_b
0 0.22039 0.0374084
  • easy access multi level index
df1.unique_level_columns(0)

['A', 'B']

df1.add_multi_index('Z', axis=1)
  • data splitting, sampling and folding (aka cross validation)
from pandas_ml_common import Sampler, XYWeight, random_splitter

df2 = pd.DataFrame({"c": np.random.random(10)})
sampler = Sampler(XYWeight(df1, df2), splitter=random_splitter(0.5))

for batches in sampler.sample_for_training():
    for batch in batches:
        print(batch)
  • access to nested numpy arrays in data frame columns (df._.values)
df3 = pd.DataFrame({"a": [[1, 2], [3, 4], [5, 6]]})
df3._.values

array([[1, 2],
       [3, 4],
       [5, 6]])
  • dynamic method call providing suitable *args and **kwargs (dependency injection)
from pandas_ml_common import call_callable_dynamic_args

def adder(a, b):
    return a + b

call_callable_dynamic_args(adder, a=12, b=10, c='illegal')

22
  • numpy utils
from pandas_ml_common import np_nans

np_nans((3, 3))

array([[nan, nan, nan],
       [nan, nan, nan],
       [nan, nan, nan]])


from pandas_ml_common import temp_seed

with temp_seed(42):
    print(np.random.random(2))

np.random.random(2)


[0.37454012 0.95071431]
array([0.69373278, 0.69790163])
  • serialization utils
from pandas_ml_common import serializeb, deserializeb

deserializeb(serializeb(np.array([1, 2, 3])))
array([1, 2, 3])
  • re-scalings
from pandas_ml_common import ReScaler

x = np.arange(0, 1, .1)
rescaler = ReScaler((0, 1), (5, -5))

rescaler(x)
array([ 5.,  4.,  3.,  2.,  1.,  0., -1., -2., -3., -4.])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-ml-common-0.2.7.tar.gz (252.2 kB view details)

Uploaded Source

File details

Details for the file pandas-ml-common-0.2.7.tar.gz.

File metadata

  • Download URL: pandas-ml-common-0.2.7.tar.gz
  • Upload date:
  • Size: 252.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for pandas-ml-common-0.2.7.tar.gz
Algorithm Hash digest
SHA256 f42829bd945ec16a51f1bba8f547d247beefda956c8884199f330b7afcca6beb
MD5 0196b1c6f4a9e65dfdeed3ef2c93c1da
BLAKE2b-256 48801e8aa8748128ad2d2bd5cd7287c1b03439d71b1d999a819f7a5c738c148c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page