Augment pandas DataFrame with methods for machine learning
Project description
The pandas ml common module
This module holds all common extensions and utilities for the pandas ml quant stack. Feel free to study the examples as well.
- easy joining of data frames with multi indexes
from pandas_ml_common import pd, np
df1 = pd.DataFrame({"a": np.random.random(10), "b": np.random.random(10)})
print(df1.inner_join(df1, prefix_left='A', prefix='B', force_multi_index=True).to_markdown())
('A', 'a') | ('A', 'b') | ('B', 'a') | ('B', 'b') | |
---|---|---|---|---|
0 | 0.907892 | 0.726913 | 0.907892 | 0.726913 |
1 | 0.602275 | 0.134278 | 0.602275 | 0.134278 |
2 | 0.264399 | 0.207429 | 0.264399 | 0.207429 |
3 | 0.559751 | 0.816759 | 0.559751 | 0.816759 |
4 | 0.951172 | 0.797524 | 0.951172 | 0.797524 |
5 | 0.504332 | 0.51996 | 0.504332 | 0.51996 |
6 | 0.765235 | 0.17908 | 0.765235 | 0.17908 |
7 | 0.388691 | 0.644103 | 0.388691 | 0.644103 |
8 | 0.663636 | 0.678879 | 0.663636 | 0.678879 |
9 | 0.291603 | 0.0164627 | 0.291603 | 0.0164627 |
- access columns with regex
df4 = pd.DataFrame({"a_22_a": np.random.random(1), "b_21_b": np.random.random(1)})
df4._[r'.*\d+_.']
a_22_a | b_21_b | |
---|---|---|
0 | 0.22039 | 0.0374084 |
- easy access multi level index
df1.unique_level_columns(0)
['A', 'B']
df1.add_multi_index('Z', axis=1)
- data splitting, sampling and folding (aka cross validation)
from pandas_ml_common import Sampler, XYWeight, random_splitter
df2 = pd.DataFrame({"c": np.random.random(10)})
sampler = Sampler(XYWeight(df1, df2), splitter=random_splitter(0.5))
for batches in sampler.sample_for_training():
for batch in batches:
print(batch)
- access to nested numpy arrays in data frame columns (
df._.values
)
df3 = pd.DataFrame({"a": [[1, 2], [3, 4], [5, 6]]})
df3._.values
array([[1, 2],
[3, 4],
[5, 6]])
- dynamic method call providing suitable *args and **kwargs (dependency injection)
from pandas_ml_common import call_callable_dynamic_args
def adder(a, b):
return a + b
call_callable_dynamic_args(adder, a=12, b=10, c='illegal')
22
- numpy utils
from pandas_ml_common import np_nans
np_nans((3, 3))
array([[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan]])
from pandas_ml_common import temp_seed
with temp_seed(42):
print(np.random.random(2))
np.random.random(2)
[0.37454012 0.95071431]
array([0.69373278, 0.69790163])
- serialization utils
from pandas_ml_common import serializeb, deserializeb
deserializeb(serializeb(np.array([1, 2, 3])))
array([1, 2, 3])
- re-scalings
from pandas_ml_common import ReScaler
x = np.arange(0, 1, .1)
rescaler = ReScaler((0, 1), (5, -5))
rescaler(x)
array([ 5., 4., 3., 2., 1., 0., -1., -2., -3., -4.])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pandas-ml-common-0.2.7.tar.gz
(252.2 kB
view details)
File details
Details for the file pandas-ml-common-0.2.7.tar.gz
.
File metadata
- Download URL: pandas-ml-common-0.2.7.tar.gz
- Upload date:
- Size: 252.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f42829bd945ec16a51f1bba8f547d247beefda956c8884199f330b7afcca6beb |
|
MD5 | 0196b1c6f4a9e65dfdeed3ef2c93c1da |
|
BLAKE2b-256 | 48801e8aa8748128ad2d2bd5cd7287c1b03439d71b1d999a819f7a5c738c148c |