Skip to main content

Augment pandas DataFrame with methods for machine learning

Project description

Pandas ML Utils

Pandas Machine Learning Utilities is part of a bigger set of libraries for a convenient experience. Usually exploring statistical models start with a pandas DataFrame.

But soon enough you will find yourself converting your data frames to numpy, splitting arrays, applying min max scalers, lagging and concatenating columns etc. As a result your notebook looks messy and became and unreadable beast. Yet the mess becomes only worse once you start to deploy your research into a productive application. The untested hard coded data pipelines need be be maintained at two places.

The aim of this library is to conveniently operate with data frames without and abstract away the ugly unreproducible data pipelines. The only thing you need is the original unprocessed data frame where you started. The data pipeline becomes a part of your model and gets saved that way. Going into production is as easy as this:

import pandas as pd
import pandas_ml_utils  # monkey patch the `DataFrame`
from pandas_ml_utils import Model
# alternatively as a one liner `from pandas_ml_utils import pd, Model` 

model = Model.load('your_saved.model')
df = pd.read_csv('your_raw_data.csv')
df_prediction = df.model.predict(model)

# do something with your prediction
df_prediction.plot()

is intended to help you through your journey of statistical or machine learning models, while you never need to leave the world of pandas.

Installation

The basic implementation supports scikit learn classifiers and regressors.

pip install pandas-ml-utils

Additional machine learning libraries are available as an add on:

pip install pandas-ml-utils-torch  # pytorch implementation
pip install pandas-ml-utils-keras  # keras + tensorflow 1.x implementation

Note that the keras/tensorflow version is currently stalled as I focus on pytorch recently. This might change with PyMC4 and tensorflow probability

Example

You will find some demo projects in the examples directory. But It might also be worth it to check the unit tests and the integration tests. Here is how classification challenge might look like:

Classification Example

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pandas-ml-utils, version 0.2.7
Filename, size File type Python version Upload date Hashes
Filename, size pandas-ml-utils-0.2.7.tar.gz (319.3 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page