Skip to main content

Wrapper for df and df[col].apply parallelized

Project description

pandas-parallel-apply

df.apply(fn) and df[col].apply(fn) wrappers with tqdm included

Installation

pip install pandas-parallel-apply

Usage

Apply on each row of a dataframe

df.apply(fn) -> apply_on_df_parallel(df: pd.DataFrame, fn: Callable, n_cores: int, pbar: bool = True)

Apply on a column of a dataframe and return the Series

df[col].apply(fn) -> apply_on_df_col_parallel(df: pd.DataFrame, col_name: str, fn: Callable, n_cores: int, pbar: bool = True)

Switches for boolean parallel/non-parallel

apply_on_df_maybe_parallel(df: pd.DataFrame, fn: Callable, parallel: bool, n_cores: int, pbar: bool = True)

and

apply_on_df_col_maybe_parallel(df: pd.DataFrame, col_name: str, fn: Callable, parallel: bool, n_cores: int, pbar: bool = True)

That's all.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pandas_parallel_apply-0.1.0-py3-none-any.whl (2.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page