Skip to main content

Wrapper for df and df[col].apply parallelized

Project description

pandas-parallel-apply

df.apply(fn), df[col].apply(fn) and series.apply(fn) wrappers with tqdm included

Installation

pip install pandas-parallel-apply

Examples

See examples/ for usage on some dummy dataframe and series.

Usage

1. Procedural

Apply on each row of a dataframe

df.apply(fn) -> apply_on_df_parallel(df: pd.DataFrame, fn: Callable, n_cores: int, pbar: bool = True)

Apply on a column of a dataframe and return the Series

df[col].apply(fn, axis=1) -> apply_on_df_col_parallel(df: pd.DataFrame, col_name: str, fn: Callable, n_cores: int, pbar: bool = True)

Apply on a series and return the modified Series

series.apply(fn) -> `apply_on_seris_parallel(series: pd.Series, fn: Callable, n_cores: int, pbar: bool = True)

Switches for boolean parallel/non-parallel

apply_on_df/df_col/series_maybe_parallel(*, parallel: bool, n_cores: int, pbar: bool = True)

2. Object Oriented Programming

Apply on each row of a dataframe

df.apply(fn) -> DataFrameParallel(df, n_cores: int, pbar: bool = True).apply(fn)

Apply on a column of a dataframe and return the Series

df[col].apply(fn, axis=1) -> DataFrameParallel(df, n_cores: int, pbar: bool=True)[col].apply(fn, axis=1)

Apply on a series

series.apply(fn) -> SeriesParallel(series, n_cores: int, pbar: bool=True).apply(fn)

That's all.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-parallel-apply-1.2.1.tar.gz (3.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page