Wrapper for df and df[col].apply parallelized
Project description
pandas-parallel-apply
df.apply(fn)
, df[col].apply(fn)
and series.apply(fn)
wrappers with tqdm included
Installation
pip install pandas-parallel-apply
Examples
See examples/
for usage on some dummy dataframe and series.
Usage
1. Procedural
Apply on each row of a dataframe
df.apply(fn)
-> apply_on_df_parallel(df: pd.DataFrame, fn: Callable, n_cores: int, pbar: bool = True)
Apply on a column of a dataframe and return the Series
df[col].apply(fn, axis=1)
-> apply_on_df_col_parallel(df: pd.DataFrame, col_name: str, fn: Callable, n_cores: int, pbar: bool = True)
Apply on a series and return the modified Series
series.apply(fn)
-> `apply_on_seris_parallel(series: pd.Series, fn: Callable, n_cores: int, pbar: bool = True)
Switches for boolean parallel/non-parallel
apply_on_df/df_col/series_maybe_parallel(*, parallel: bool, n_cores: int, pbar: bool = True)
2. Object Oriented Programming
Apply on each row of a dataframe
df.apply(fn)
-> DataFrameParallel(df, n_cores: int, pbar: bool = True).apply(fn)
Apply on a column of a dataframe and return the Series
df[col].apply(fn, axis=1)
-> DataFrameParallel(df, n_cores: int, pbar: bool=True)[col].apply(fn, axis=1)
Apply on a series
series.apply(fn)
-> SeriesParallel(series, n_cores: int, pbar: bool=True).apply(fn)
That's all.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for pandas-parallel-apply-1.2.1.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | da63badebef1c747a79f6d6524b45e0ef2113f98d43b87d1c8905cd21ea89b5d |
|
MD5 | f56d2f10be2fccbc205d6d06cf9e7d4a |
|
BLAKE2b-256 | 1e3b056648d1727a52e0d927da793cae0a614da5cd91444dae98bd155efd7c37 |