Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, hlp

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions and predefined options:

  • tbl utilities for table descriptions

    • 🌟show_num_df() displays a table as styled version with additional information
    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
      • ⚠️ pivot_df() is depricated and wont get further updates. Its features are well covered in standard pd.pivot_table()

  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plots_bars() a standardized bar plot for a categorical column
      • features convidence intervals via use_ci option
    • 🆕 plot_histogram() histogram for one or more numerical columns
    • 🆕 plot_joints() a joint plot for exactly two numerical columns
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • hlp contains some (variety) helper functions

    • df_to_series() converts a dataframe to a series
    • mean_confidence_interval() calculates mean and confidence interval for a series
    • wrap_text() formats strings or lists to a given width to fit nicely on the screen
    • replace_delimiter_outside_quotes() when manual import of csv files is needed: replaces delimiters only outside of quotes
    • create_barcode_from_url() creates a barcode from a given URL
    • add_datetime_col() adds a datetime columns to a dataframe
    • 🆕 show_package_version prints version of a list of packages

note: theme setting can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show bars with confidence intervals
_df = df[["payment", "fare"]]
pls.plot_bars(
    _df,
    dropna=False,
    use_ci=True,
    height=600,
    width=800,
    precision=1,
)

bars_with_ci

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

tags

#pandas, #plotly, #visualizations, #statistics

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_plots-0.11.1.tar.gz (27.9 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.11.1-py3-none-any.whl (26.3 kB view details)

Uploaded Python 3

File details

Details for the file pandas_plots-0.11.1.tar.gz.

File metadata

  • Download URL: pandas_plots-0.11.1.tar.gz
  • Upload date:
  • Size: 27.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas_plots-0.11.1.tar.gz
Algorithm Hash digest
SHA256 19941ffc42b19179275a01038d56703983c656f623110718d46b1ec754757f20
MD5 9e3e1edc834d71bc71ac5ef0a74b1a20
BLAKE2b-256 742abb25134399847c1887ac5d2f6482cdaba5e59b92387b441ee36b07e258cb

See more details on using hashes here.

File details

Details for the file pandas_plots-0.11.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_plots-0.11.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c7b56c4323da5aea35a624b23eee50c4615064fcd952482956dd196acc67df99
MD5 618b07e9e526a58558c0a1055c53c568
BLAKE2b-256 45c1f5b645ad71dbab5bf40158e4809afe25d4cf83bb5a28837675ce79a533b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page