Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, hlp, pii

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions and predefined options:

  • tbl utilities for table descriptions

    • 🌟show_num_df() displays a table as styled version with additional information
    • describe_df() an alternative version of pandas describe() function
    • descr_db() a very short descr for a duckdb relation
    • pivot_df() gets a pivot table of a 3 column dataframe (or 2 columns if no weights are given)
    • print_summary() shows statistics for a pandas DataFrame or Series
  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plots_bars() a standardized bar plot for a categorical column
      • features confidence intervals via use_ci option
    • plot_histogram() histogram for one or more numerical columns
    • plot_joints() a joint plot for exactly two numerical columns
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • hlp contains some (variety) helper functions

    • df_to_series() converts a dataframe to a series
    • mean_confidence_interval() calculates mean and confidence interval for a series
    • wrap_text() formats strings or lists to a given width to fit nicely on the screen
    • replace_delimiter_outside_quotes() when manual import of csv files is needed: replaces delimiters only outside of quotes
    • create_barcode_from_url() creates a barcode from a given URL
    • add_datetime_col() adds a datetime columns to a dataframe
    • show_package_version prints version of a list of packages
    • get_os helps to identify and ensure operating system at runtime
  • pii has routines for handling of personally identifiable information

    • remove_pii() logs and deletes pii from a series

note: theme setting can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show bars with confidence intervals
_df = df[["payment", "fare"]]
pls.plot_bars(
    _df,
    dropna=False,
    use_ci=True,
    height=600,
    width=800,
    precision=1,
)

bars_with_ci

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

tags

#pandas, #plotly, #visualizations, #statistics

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_plots-0.11.16.tar.gz (31.0 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.11.16-py3-none-any.whl (29.4 kB view details)

Uploaded Python 3

File details

Details for the file pandas_plots-0.11.16.tar.gz.

File metadata

  • Download URL: pandas_plots-0.11.16.tar.gz
  • Upload date:
  • Size: 31.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas_plots-0.11.16.tar.gz
Algorithm Hash digest
SHA256 021cb1d6d2ae996df6974f2240a7a40a74475e5f0350258922f2dea1841fffc7
MD5 f8fcf8e5929ec047cf9f7167be1cdc21
BLAKE2b-256 8927a1c703085cd6b0a5f2a37ae60230f00e835a0806bfa48c24b6122e1eb095

See more details on using hashes here.

File details

Details for the file pandas_plots-0.11.16-py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_plots-0.11.16-py3-none-any.whl
Algorithm Hash digest
SHA256 eab8a1274b40f5c724d62d9f7a32fc4d04767cec354ce290eba23b98438665ee
MD5 c2be2fbea52de55f6781b0b2843a0ccf
BLAKE2b-256 6f18d571b01a0ff6d56e1210a18a67d81a1a7da6f4f69ecd6045a3a55230eb82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page