Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, sql, txt

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.

It is subdivided into:

  • tbl utilities for table descriptions

    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
    • 🆕 show_num_df() displays a table as styled version with additional information
  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plots_bars() a standardized bar plot
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • sql is added as convienience wrapper for retrieving data from sql databases

    • connect_sql get data from ['mssql', 'sqlite','postgres']
  • txt includes some text based utilities

    • wrap formats strings or lists to a given width to fit nicely on the screen

note: theming can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show pivoted values for selected columns
tbl.pivot_df(df[['color', 'payment', 'fare']])

pivot_df

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

dependencies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-plots-0.8.10.tar.gz (22.3 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.8.10-py3-none-any.whl (21.3 kB view details)

Uploaded Python 3

File details

Details for the file pandas-plots-0.8.10.tar.gz.

File metadata

  • Download URL: pandas-plots-0.8.10.tar.gz
  • Upload date:
  • Size: 22.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas-plots-0.8.10.tar.gz
Algorithm Hash digest
SHA256 619080e2ea688a3e56aa047d4c2f965e4b4e328f107f4ec968b11e97f0a81cd2
MD5 0a7ed6987e4b18e73d7a4c315d763ab9
BLAKE2b-256 96c77f1777861a1ca568c4ecf250fd3c44fd9cf6591de6c7f1e9e59f6666bbb8

See more details on using hashes here.

File details

Details for the file pandas_plots-0.8.10-py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_plots-0.8.10-py3-none-any.whl
Algorithm Hash digest
SHA256 c299a879ec8424d90cf9ce2a3b5a747989c21678cb09e6eb4466bdc0ffb82e33
MD5 69e3bb94e1dd131111ab5d362c1bc465
BLAKE2b-256 f93312c824cd1a322e481b5e9b3bdd0b3de8447ee4d4b9051d9c6beb4276c3cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page