Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, sql, txt

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.

It is subdivided into:

  • tbl utilities for table descriptions

    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
    • 🆕 show_num_df() displays a table as styled version with additional information
  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plots_bars() a standardized bar plot
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • sql is added as convienience wrapper for retrieving data from sql databases

    • connect_sql get data from ['mssql', 'sqlite','postgres']
  • txt includes some text based utilities

    • wrap formats strings or lists to a given width to fit nicely on the screen

note: theming can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show pivoted values for selected columns
tbl.pivot_df(df[['color', 'payment', 'fare']])

pivot_df

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

dependencies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-plots-0.8.11.tar.gz (22.3 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.8.11-py3-none-any.whl (21.3 kB view details)

Uploaded Python 3

File details

Details for the file pandas-plots-0.8.11.tar.gz.

File metadata

  • Download URL: pandas-plots-0.8.11.tar.gz
  • Upload date:
  • Size: 22.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas-plots-0.8.11.tar.gz
Algorithm Hash digest
SHA256 e322447f85e3217e9b3360ab93dac6bf0f534b67ec0de53811477d6937c7b6ed
MD5 9f57d88997035d4b48f98f7dd8fdf0cb
BLAKE2b-256 a0089a1f89f24f531dd958e4cab50415f463007e889e1943807f671c6f61fa08

See more details on using hashes here.

File details

Details for the file pandas_plots-0.8.11-py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_plots-0.8.11-py3-none-any.whl
Algorithm Hash digest
SHA256 69c19c5608eeb7ab7a9a90df4dd6d9a783709747210901e54b03cf1bd77c5ee5
MD5 bd428ea11083242b5b573d560e4691b2
BLAKE2b-256 0d09bf2a6b928126da5985cdd4d22e9cf9e628ae02adc08a11ef7fefeb288982

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page