Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, plt, ven

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')

plt.plot_box(df['fare'], height=400, violin=True)

plot_box

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.

It is subdivided into:

  • tbl utilities for table descriptions

    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
    • 🆕 show_num_df() displays a table as styled version with additional information
  • plt for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plots_bars() a standardized bar plot
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • sql is added as convienience wrapper for retrieving data from sql databases

    • connect_sql get data from ['mssql', 'sqlite','postgres']
  • txt includes some text based utilities

    • wrap formats strings or lists to a given width to fit nicely on the screen

more examples

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show pivoted values for selected columns
tbl.pivot_df(df[['color', 'payment', 'fare']])

pivot_df

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = set(df.pickup_zone)
set_b = set(df.dropoff_zone)
set_c = set(df['pickup_borough'])
_df, _details = ven.show_venn3(
    "taxis",
    set_a,
    "pick",
    set_b,
    "drop",
    c_set=set_c,
    c_label="borough",
    verbose=0,
    size=8,
)

venn

dependencies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-plots-0.8.2.tar.gz (21.1 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.8.2-py3-none-any.whl (20.4 kB view details)

Uploaded Python 3

File details

Details for the file pandas-plots-0.8.2.tar.gz.

File metadata

  • Download URL: pandas-plots-0.8.2.tar.gz
  • Upload date:
  • Size: 21.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas-plots-0.8.2.tar.gz
Algorithm Hash digest
SHA256 9f1fc297eb9477c4e2a8fea181e42b62acb0d6ad33e8bb5014bb497c4491ee04
MD5 e14eb0fcd1257e03c6edd891af567a52
BLAKE2b-256 3c918a8631d4d416a5192d501550e81991298bed156f68355c24dd054048a704

See more details on using hashes here.

File details

Details for the file pandas_plots-0.8.2-py3-none-any.whl.

File metadata

  • Download URL: pandas_plots-0.8.2-py3-none-any.whl
  • Upload date:
  • Size: 20.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas_plots-0.8.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5c879f20fc50e3bda64d4482f42b80e9fdce5093eff7d5cb92f7611a5774e733
MD5 d33c003be9964a4ca57414aabb06d030
BLAKE2b-256 94471955fec20c524462db9b109222e9e5990cca953a468657ee5aff87a97021

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page