Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, sql, txt

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.

It is subdivided into:

  • tbl utilities for table descriptions

    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
    • 🆕 show_num_df() displays a table as styled version with additional information
  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plots_bars() a standardized bar plot
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • sql is added as convienience wrapper for retrieving data from sql databases

    • connect_sql get data from ['mssql', 'sqlite','postgres']
  • txt includes some text based utilities

    • wrap formats strings or lists to a given width to fit nicely on the screen

note: theming can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show pivoted values for selected columns
tbl.pivot_df(df[['color', 'payment', 'fare']])

pivot_df

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

dependencies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-plots-0.8.9.tar.gz (22.3 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.8.9-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file pandas-plots-0.8.9.tar.gz.

File metadata

  • Download URL: pandas-plots-0.8.9.tar.gz
  • Upload date:
  • Size: 22.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas-plots-0.8.9.tar.gz
Algorithm Hash digest
SHA256 e792d15279a156950bd2de3f7b8f6baa3cfa71ad65d25ac28676c73fdf54c3a7
MD5 cdfc11f2fb89b2fd5ca036a43b49a154
BLAKE2b-256 b82ec95979b5805daa4e415efe644b5231d225d7a7716b7efd1d369bde996e8c

See more details on using hashes here.

File details

Details for the file pandas_plots-0.8.9-py3-none-any.whl.

File metadata

  • Download URL: pandas_plots-0.8.9-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas_plots-0.8.9-py3-none-any.whl
Algorithm Hash digest
SHA256 27d44453a498ac72734687709eeac5d9b6da343c021ac3815d1f6514380e42dd
MD5 1d20981c423c69a00969438db21292b3
BLAKE2b-256 1ae9ade87791543156769bb5e3b6316f903e036cb88765767d0646c566cceb01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page