Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, txt

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.

It is subdivided into:

  • tbl utilities for table descriptions

    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
    • 🆕 show_num_df() displays a table as styled version with additional information
  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plots_bars() a standardized bar plot
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • txt includes some text based utilities

    • wrap formats strings or lists to a given width to fit nicely on the screen

note: theming can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show pivoted values for selected columns
tbl.pivot_df(df[['color', 'payment', 'fare']])

pivot_df

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-plots-0.9.0.tar.gz (21.3 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.9.0-py3-none-any.whl (20.0 kB view details)

Uploaded Python 3

File details

Details for the file pandas-plots-0.9.0.tar.gz.

File metadata

  • Download URL: pandas-plots-0.9.0.tar.gz
  • Upload date:
  • Size: 21.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas-plots-0.9.0.tar.gz
Algorithm Hash digest
SHA256 870b78b8867dedc389a6b210a7eb5ac3185e423a0b05f8c971af623bcc7860d6
MD5 5cebef27046825bd375fa386ce4ff37c
BLAKE2b-256 6329346eea7fef043b78f01afbfb4abbfe764d623e4a033985082f33abc975d5

See more details on using hashes here.

File details

Details for the file pandas_plots-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: pandas_plots-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 20.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas_plots-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 de619d5976ae96aaee08a16a7a8c7d18404d79e5211f3969a6db9db0f3c13287
MD5 c791c2dc470ff13cd000e928e38980ed
BLAKE2b-256 32be166fb1d212618a927398d032137066713fe4f485dc62f70ed6c0461a1456

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page