Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, txt

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.

It is subdivided into:

  • tbl utilities for table descriptions

    • 🌟show_num_df() displays a table as styled version with additional information
    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
      • ⚠️ pivot_df() is depricated and wont get further updates
  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plots_bars() a standardized bar plot
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • txt includes some text based utilities

    • wrap formats strings or lists to a given width to fit nicely on the screen

note: theming can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show pivoted values for selected columns
tbl.pivot_df(df[['color', 'payment', 'fare']])

pivot_df

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-plots-0.9.2.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.9.2-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file pandas-plots-0.9.2.tar.gz.

File metadata

  • Download URL: pandas-plots-0.9.2.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas-plots-0.9.2.tar.gz
Algorithm Hash digest
SHA256 f41d15f9aa0a5e38c58dac44caa20afaee6d66cff59ade60cb3bc65c56e02ff0
MD5 632f85dec222b0980c9bc591d6a4f593
BLAKE2b-256 9317287d813a531d78d66d321ccd0ed171cc811fead3e218fe7d750bf5dbddda

See more details on using hashes here.

File details

Details for the file pandas_plots-0.9.2-py3-none-any.whl.

File metadata

  • Download URL: pandas_plots-0.9.2-py3-none-any.whl
  • Upload date:
  • Size: 20.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas_plots-0.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1cf62585b90397644d60d6ce3c34023a4cbfec74b8b90b454a8e908e3e61d67c
MD5 241a46f4569b364cd48d8aa4c138cca1
BLAKE2b-256 cdfad71a865290d87dcd9825cc120404506a2880c68194decbd188931336753c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page