Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, hlp

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.

It is subdivided into:

  • tbl utilities for table descriptions

    • 🌟show_num_df() displays a table as styled version with additional information
    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
      • ⚠️ pivot_df() is depricated and wont get further updates. Its features are well covered in standard pd.pivot_table()
  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plots_bars() a standardized bar plot
      • 🆕 now features convidence intervals via use_ci option
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • hlp contains some (variety) helper functions

    • df_to_series() converts a dataframe to a series
    • mean_confidence_interval() calculates mean and confidence interval for a series
    • wrap_text() formats strings or lists to a given width to fit nicely on the screen
    • replace_delimiter_outside_quotes() when manual import of csv files is needed: replaces delimiters only outside of quotes

note: theme setting can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show bars with confidence intervals
_df = df[["payment", "fare"]]
pls.plot_bars(
    _df,
    dropna=False,
    use_ci=True,
    height=600,
    width=800,
    precision=1,
)

bars_with_ci

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-plots-0.9.4.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.9.4-py3-none-any.whl (23.1 kB view details)

Uploaded Python 3

File details

Details for the file pandas-plots-0.9.4.tar.gz.

File metadata

  • Download URL: pandas-plots-0.9.4.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas-plots-0.9.4.tar.gz
Algorithm Hash digest
SHA256 f80637f2e1d0a72fc2fc9ea40e36af54df0a0c08ca14f91cb6515082f5e418f5
MD5 296d6025979c2cd4fdf57453580a4180
BLAKE2b-256 2b5c3ed291ed6b199c9352a30d138d642637b0d97bb2f123654e6139fb45c309

See more details on using hashes here.

File details

Details for the file pandas_plots-0.9.4-py3-none-any.whl.

File metadata

  • Download URL: pandas_plots-0.9.4-py3-none-any.whl
  • Upload date:
  • Size: 23.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas_plots-0.9.4-py3-none-any.whl
Algorithm Hash digest
SHA256 eb4e3a69bdc9bfb49a8267ce04d4f53c01723deb80f4e92f82e4caba94733ce6
MD5 4822468067e928c1afd4f2b921574e4b
BLAKE2b-256 79bf5f94578df66ddaf7fc554c4563d4fd02aca6790fed4886849e66ff6d8de5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page