Skip to main content

A collection of helper for table handling and vizualization

Project description

pandas-plots

PyPI - Version GitHub last commit GitHub License py3.10

usage

install / update package

pip install pandas-plots -U

include in python

from pandas_plots import tbl, pls, ven, hlp

example

# load sample dataset from seaborn
import seaborn as sb
df = sb.load_dataset('taxis')
_df = df[["passengers", "distance", "fare"]][:5]
tbl.show_num_df(
    _df,
    total_axis="xy",
    total_mode="mean",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    kpi_mode="max_min_x",
    kpi_rag_list=(1,7),
)

show_num

why use pandas-plots

pandas-plots is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.

It is subdivided into:

  • tbl utilities for table descriptions

    • 🌟show_num_df() displays a table as styled version with additional information
    • describe_df() an alternative version of pandas describe() function
    • pivot_df() gets a pivot table of a 3 column dataframe
      • ⚠️ pivot_df() is depricated and wont get further updates. Its features are well covered in standard pd.pivot_table()
  • pls for plotly visualizations

    • plot_box() auto annotated boxplot w/ violin option
    • plot_boxes() multiple boxplots (annotation is experimental)
    • plots_bars() a standardized bar plot
      • 🆕 now features convidence intervals via use_ci option
    • plot_stacked_bars() shortcut to stacked bars 😄
    • plot_quadrants() quickly shows a 2x2 heatmap
  • ven offers functions for venn diagrams

    • show_venn2() displays a venn diagram for 2 sets
    • show_venn3() displays a venn diagram for 3 sets
  • hlp contains some (variety) helper functions

    • df_to_series() converts a dataframe to a series
    • mean_confidence_interval() calculates mean and confidence interval for a series
    • wrap_text() formats strings or lists to a given width to fit nicely on the screen
    • replace_delimiter_outside_quotes() when manual import of csv files is needed: replaces delimiters only outside of quotes

note: theme setting can be controlled through all functions by setting the environment variable THEME to either light or dark

more examples

pls.plot_box(df['fare'], height=400, violin=True)

plot_box

# quick and exhaustive description of any table
tbl.describe_df(df, 'taxis', top_n_uniques=5)

describe_df

# show bars with confidence intervals
_df = df[["payment", "fare"]]
pls.plot_bars(
    _df,
    dropna=False,
    use_ci=True,
    height=600,
    width=800,
    precision=1,
)

bars_with_ci

# show venn diagram for 3 sets
from pandas_plots import ven

set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opel','bmw','bentley','audi'}
set_c = {'ferrari','bmw','chrysler','renault','peugeot','fiat'}
_df, _details = ven.show_venn3(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    c_set=set_c,
    c_label="cars3",
    verbose=0,
    size=8,
)

venn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-plots-0.9.5.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

pandas_plots-0.9.5-py3-none-any.whl (23.1 kB view details)

Uploaded Python 3

File details

Details for the file pandas-plots-0.9.5.tar.gz.

File metadata

  • Download URL: pandas-plots-0.9.5.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas-plots-0.9.5.tar.gz
Algorithm Hash digest
SHA256 2dcae2da39217f655c5a7340fb4578327f3b3d054c1284d22ac663cdeebb6a80
MD5 d9c9718e7a6af62a255db1775f2638c0
BLAKE2b-256 8b8924da9936141ac19eac7faa4414e9798b24f1b0db8c3ba3ef198b2aa47add

See more details on using hashes here.

File details

Details for the file pandas_plots-0.9.5-py3-none-any.whl.

File metadata

  • Download URL: pandas_plots-0.9.5-py3-none-any.whl
  • Upload date:
  • Size: 23.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pandas_plots-0.9.5-py3-none-any.whl
Algorithm Hash digest
SHA256 26ab3bab0370905d969b3129c1ad48fb492e3d21e33267f54a0f7b1162da68e6
MD5 604cdf1d0b0a3b0ec6a816ff3451bae1
BLAKE2b-256 2657bc1b70668ea185918b96e58c04139c2b97d6d55ed17adfab9016d6b4d41b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page