A validation library for Pandas data frames using user-friendly schemas
Project description
For the full documentation, refer to the Github Pages Website.
PandasSchema is a module for validating tabulated data, such as CSVs (Comma Separated Value files), and TSVs (Tab Separated Value files). It uses the incredibly powerful data analysis tool Pandas to do so quickly and efficiently.
For example, say your code expects a CSV that looks a bit like this:
Given Name,Family Name,Age,Sex,Customer ID Gerald,Hampton,82,Male,2582GABK Yuuwa,Miyake,27,Male,7951WVLW Edyta,Majewska,50,Female,7758NSID
Now you want to be able to ensure that the data in your CSV is in the correct format:
import pandas as pd
from io import StringIO
from pandas_schema import Column, Schema
from pandas_schema.validation import LeadingWhitespaceValidation, TrailingWhitespaceValidation, CanConvertValidation, MatchesPatternValidation, InRangeValidation, InListValidation
schema = Schema([
Column('Given Name', [LeadingWhitespaceValidation(), TrailingWhitespaceValidation()]),
Column('Family Name', [LeadingWhitespaceValidation(), TrailingWhitespaceValidation()]),
Column('Age', [InRangeValidation(0, 120)]),
Column('Sex', [InListValidation(['Male', 'Female', 'Other'])]),
Column('Customer ID', [MatchesPatternValidation(r'\d{4}[A-Z]{4}')])
])
test_data = pd.read_csv(StringIO('''Given Name,Family Name,Age,Sex,Customer ID
Gerald ,Hampton,82,Male,2582GABK
Yuuwa,Miyake,270,male,7951WVLW
Edyta,Majewska ,50,Female,775ANSID
'''))
errors = schema.validate(test_data)
for error in errors:
print(error)
PandasSchema would then output
{row: 0, column: "Given Name"}: "Gerald " contains trailing whitespace
{row: 1, column: "Age"}: "270" was not in the range [0, 120)
{row: 1, column: "Sex"}: "male" is not in the list of legal options (Male, Female, Other)
{row: 2, column: "Family Name"}: "Majewska " contains trailing whitespace
{row: 2, column: "Customer ID"}: "775ANSID" does not match the pattern "\d{4}[A-Z]{4}"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file pandas_schema-0.3.2.tar.gz
.
File metadata
- Download URL: pandas_schema-0.3.2.tar.gz
- Upload date:
- Size: 13.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 21293757a29052c15fdc09e54539a34b94fd0d93792792411fa911c4702ae95c |
|
MD5 | dbcda14b8d47fd563d99048d298aad9b |
|
BLAKE2b-256 | 516fd609e55ee9821c96b43b2ac654384c46de5360a4e617b4497d9e6b90b35d |
File details
Details for the file pandas_schema-0.3.2-py3.6.egg
.
File metadata
- Download URL: pandas_schema-0.3.2-py3.6.egg
- Upload date:
- Size: 19.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97350845fc26f9574cefe4c8e826dfd8a49049d5e708e44be8d654c84828f0f7 |
|
MD5 | f50e8f6fd0565b8dc72df103811cd3ae |
|
BLAKE2b-256 | 7a2113a0f648832814408e48b2c6d42acf64f8c88f093abe7c12b80d8d58ca92 |
File details
Details for the file pandas_schema-0.3.2-py3-none-any.whl
.
File metadata
- Download URL: pandas_schema-0.3.2-py3-none-any.whl
- Upload date:
- Size: 10.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1e5ac4b3794e5d7b5cbadd91c1a61453459356c1c4915804f17f781e2a99b45 |
|
MD5 | 075ca7a8fae950f62055e94492e34386 |
|
BLAKE2b-256 | 45acc41262d809a9935668503108ed9d09283759ec3942c01bad9d103cba7643 |