Skip to main content

Add a select accessor to pandas

Project description

pandas-selectable

test status

What Is It?

pandas-selectable adds a select accessor to pandas DataFrames and Series. It's like query but with the niceties of tab-completion.

Quickstart

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: import pandas_selectable  # magic

In [4]: dta = pd.DataFrame.from_dict({
   ...:     'A': ['A', 'B', 'C'] * 5,
   ...:     'B': np.arange(1, 16),
   ...:     'C': pd.date_range('2020-01-01', periods=15)
   ...: })

In [5]: dta.head()
Out[5]:
   A  B          C
0  A  1 2020-01-01
1  B  2 2020-01-02
2  C  3 2020-01-03
3  A  4 2020-01-04
4  B  5 2020-01-05

In [6]: dta.select.A == 'B'
Out[6]:
    A   B          C
1   B   2 2020-01-02
4   B   5 2020-01-05
7   B   8 2020-01-08
10  B  11 2020-01-11
13  B  14 2020-01-14

In [7]: dta.select.C >= '2020-01-03'
Out[7]:
    A   B          C
2   C   3 2020-01-03
3   A   4 2020-01-04
4   B   5 2020-01-05
5   C   6 2020-01-06
6   A   7 2020-01-07
7   B   8 2020-01-08
8   C   9 2020-01-09
9   A  10 2020-01-10
10  B  11 2020-01-11
11  C  12 2020-01-12
12  A  13 2020-01-13
13  B  14 2020-01-14
14  C  15 2020-01-15

In [8]: dta.select.A.str.contains('A')
Out[8]:
    A   B          C
0   A   1 2020-01-01
3   A   4 2020-01-04
6   A   7 2020-01-07
9   A  10 2020-01-10
12  A  13 2020-01-13

In [9]: dta.select.C.dt.is_month_start
Out[9]:
   A  B          C
0  A  1 2020-01-01

It also works for Series.

In [10]: dta.A.select == 'A'
Out[10]:
0     A
3     A
6     A
9     A
12    A
Name: A, dtype: object

Though the string and datetime accessor APIs are slightly inconsistent. They're available via the select accessor now.

In [11]: dta.A.select.str.contains('B')
Out[11]:
1     B
4     B
7     B
10    B
13    B
Name: A, dtype: object

Requirements

pandas >= 1.1

Installation

pip install pandas-selectable

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_selectable-1.0.1.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

pandas_selectable-1.0.1-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file pandas_selectable-1.0.1.tar.gz.

File metadata

  • Download URL: pandas_selectable-1.0.1.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pandas_selectable-1.0.1.tar.gz
Algorithm Hash digest
SHA256 06eba30ea5ec2e79bcbdc7cce0bf34457f51db33ab659ef639f17b8cf5dd94e3
MD5 4b9d7536e76ec455071bccaefcacf355
BLAKE2b-256 2d326ab0986f3ccf092323557c22cd298a96025e16accdfaa5ae53115ce3bd4c

See more details on using hashes here.

File details

Details for the file pandas_selectable-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: pandas_selectable-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pandas_selectable-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1071e13459e0ecc587a4d8df300a68916a2239f224e0bc006d6b05e720369c11
MD5 4c351b46eb9515750dfb7932c6246c72
BLAKE2b-256 f385fb1c519f1d8b4be31babc4286ecd47ee5d0eaeff10b7601e2ce7a64679b9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page