Skip to main content

Add a select accessor to pandas

Project description

pandas-selectable

test status

What Is It?

pandas-selectable adds a select accessor to pandas DataFrames and Series. It's like query but with the niceties of tab-completion.

Quickstart

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: import pandas_selectable  # magic

In [4]: dta = pd.DataFrame.from_dict({
   ...:     'A': ['A', 'B', 'C'] * 5,
   ...:     'B': np.arange(1, 16),
   ...:     'C': pd.date_range('2020-01-01', periods=15)
   ...: })

In [5]: dta.head()
Out[5]:
   A  B          C
0  A  1 2020-01-01
1  B  2 2020-01-02
2  C  3 2020-01-03
3  A  4 2020-01-04
4  B  5 2020-01-05

In [6]: dta.select.A == 'B'
Out[6]:
    A   B          C
1   B   2 2020-01-02
4   B   5 2020-01-05
7   B   8 2020-01-08
10  B  11 2020-01-11
13  B  14 2020-01-14

In [7]: dta.select.C >= '2020-01-03'
Out[7]:
    A   B          C
2   C   3 2020-01-03
3   A   4 2020-01-04
4   B   5 2020-01-05
5   C   6 2020-01-06
6   A   7 2020-01-07
7   B   8 2020-01-08
8   C   9 2020-01-09
9   A  10 2020-01-10
10  B  11 2020-01-11
11  C  12 2020-01-12
12  A  13 2020-01-13
13  B  14 2020-01-14
14  C  15 2020-01-15

In [8]: dta.select.A.str.contains('A')
Out[8]:
    A   B          C
0   A   1 2020-01-01
3   A   4 2020-01-04
6   A   7 2020-01-07
9   A  10 2020-01-10
12  A  13 2020-01-13

In [9]: dta.select.C.dt.is_month_start
Out[9]:
   A  B          C
0  A  1 2020-01-01

It also works for Series.

In [10]: dta.A.select == 'A'
Out[10]:
0     A
3     A
6     A
9     A
12    A
Name: A, dtype: object

Though the string and datetime accessor APIs are slightly inconsistent. They're available via the select accessor now.

In [11]: dta.A.select.str.contains('B')
Out[11]:
1     B
4     B
7     B
10    B
13    B
Name: A, dtype: object

Requirements

pandas >= 1.1

Installation

pip install pandas-selectable

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_selectable-1.0.2.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

pandas_selectable-1.0.2-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file pandas_selectable-1.0.2.tar.gz.

File metadata

  • Download URL: pandas_selectable-1.0.2.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for pandas_selectable-1.0.2.tar.gz
Algorithm Hash digest
SHA256 a300e0ef9772ab5f3d656c3812d121a2ab7cf7d4f6a690bf94ceef030edb5f77
MD5 6fd198c387102cf01961790ea6749688
BLAKE2b-256 a450e5686f8675173f841bc157a74cb63aaf250625de4c716b1cc162c2607e17

See more details on using hashes here.

File details

Details for the file pandas_selectable-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: pandas_selectable-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for pandas_selectable-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 279015fa12352e32b854236ed9dbe0990ce22e4c08952ff12406f9cf0128fc03
MD5 0bd075c02a27b847aa3151760b82c9d4
BLAKE2b-256 78f2fb80cde7ae7fc93fae2dee06df4b99518aad6f5e7baaf835544b8d907793

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page