Skip to main content

Add a select accessor to pandas

Project description

pandas-selectable

test status

What Is It?

pandas-selectable adds a select accessor to pandas DataFrames and Series. It's like query but with the niceties of tab-completion.

Quickstart

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: import pandas_selectable  # magic

In [4]: dta = pd.DataFrame.from_dict({
   ...:     'X': ['A', 'B', 'C'] * 5,
   ...:     'Y': np.arange(1, 16),
   ...:     'Z': pd.date_range('2020-01-01', periods=15)
   ...: })

In [5]: dta.head()
Out[5]:
   X  Y          Z
0  A  1 2020-01-01
1  B  2 2020-01-02
2  C  3 2020-01-03
3  A  4 2020-01-04
4  B  5 2020-01-05

In [6]: dta.select.X == 'B'
Out[6]:
    X   Y          Z
1   B   2 2020-01-02
4   B   5 2020-01-05
7   B   8 2020-01-08
10  B  11 2020-01-11
13  B  14 2020-01-14

In [7]: dta.select.Z >= '2020-01-03'
Out[7]:
    X   Y          Z
2   C   3 2020-01-03
3   A   4 2020-01-04
4   B   5 2020-01-05
5   C   6 2020-01-06
6   A   7 2020-01-07
7   B   8 2020-01-08
8   C   9 2020-01-09
9   A  10 2020-01-10
10  B  11 2020-01-11
11  C  12 2020-01-12
12  A  13 2020-01-13
13  B  14 2020-01-14
14  C  15 2020-01-15

In [8]: dta.select.X.str.contains('A')
Out[8]:
    X   Y          Z
0   A   1 2020-01-01
3   A   4 2020-01-04
6   A   7 2020-01-07
9   A  10 2020-01-10
12  A  13 2020-01-13

In [9]: dta.select.Z.dt.is_month_start
Out[9]:
   X  Y          Z
0  A  1 2020-01-01

It also works for Series.

In [10]: dta.X.select == 'A'
Out[10]:
0     A
3     A
6     A
9     A
12    A
Name: X, dtype: object

Though the string and datetime accessor APIs are slightly inconsistent. They're available via the select accessor now.

In [11]: dta.X.select.str.contains('B')
Out[11]:
1     B
4     B
7     B
10    B
13    B
Name: X, dtype: object

Requirements

pandas >= 1.1

Installation

pip install pandas-selectable

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_selectable-1.1.1.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

pandas_selectable-1.1.1-py3-none-any.whl (5.1 kB view details)

Uploaded Python 3

File details

Details for the file pandas_selectable-1.1.1.tar.gz.

File metadata

  • Download URL: pandas_selectable-1.1.1.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for pandas_selectable-1.1.1.tar.gz
Algorithm Hash digest
SHA256 5f2c4ff0f765c195abb22bc9abc5f862e4115042d0da7f238af2b3fef211048f
MD5 cb8df9773209f36900e10e6230379669
BLAKE2b-256 007c7a947b2777e6cc5425838eb2c69add1e2363aacef637235c16bdc3e1e7d8

See more details on using hashes here.

File details

Details for the file pandas_selectable-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: pandas_selectable-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 5.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for pandas_selectable-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5b685316ded8d54495f6989adf351962fd8560ebbef0d95fc67350a51c102666
MD5 358bee3533b78f8aee3b88b98d5e08cf
BLAKE2b-256 bd88611640348fd5498ba16e3340cea2bfd9b58912af2b8041849d766fae9581

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page