Augment pandas DataFrame with methods for machine learning
Project description
Pandas TA Quant
Not only a pure python re-implementation of the famous TA-Lib. Additional indicators are available like covariance measures or arma, garch and sarimax models. The library fully builds on top of pandas and pandas_ml_common, therefore allows to deal with MultiIndex easily:
Date | ('spy', 'Open') | ('spy', 'High') | ('spy', 'Low') | ('spy', 'Close') | ('spy', 'Volume') | ('spy', 'Dividends') | ('spy', 'Stock Splits') | ('gld', 'Open') | ('gld', 'High') | ('gld', 'Low') | ('gld', 'Close') | ('gld', 'Volume') | ('gld', 'Dividends') | ('gld', 'Stock Splits') |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020-02-07 00:00:00 | 332.82 | 333.99 | 331.6 | 332.2 | 6.41394e+07 | 0 | 0 | 147.83 | 148.18 | 147.34 | 147.79 | 6.3793e+06 | 0 | 0 |
2020-02-10 00:00:00 | 331.23 | 334.75 | 331.19 | 334.68 | 4.207e+07 | 0 | 0 | 148.21 | 148.45 | 147.91 | 148.17 | 5.7936e+06 | 0 | 0 |
df = pd.read_pickle("../pandas_ta_quant_test/.data/spy_gld.pickle")
df._[["Close", df._["Close"].ta.sma(200)]].plot(figsize=(20,10))
Full List of indicators
To get a full list if indicators as DataFrame use df.ta.help
.
Here is a non-complete ever-growing list:
module | |
---|---|
ta_adx | pandas_ta_quant.technical_analysis.indicators.multi_object |
ta_all | pandas_ta_quant.technical_analysis.indicators |
ta_apo | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_atr | pandas_ta_quant.technical_analysis.indicators.multi_object |
ta_bbands | pandas_ta_quant.technical_analysis.bands |
ta_bbands_indicator | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_bop | pandas_ta_quant.technical_analysis.indicators.multi_object |
ta_candle_category | pandas_ta_quant.technical_analysis.encoders.candles |
ta_candles_as_culb | pandas_ta_quant.technical_analysis.encoders.candles |
ta_cci | pandas_ta_quant.technical_analysis.indicators.multi_object |
ta_cross | pandas_ta_quant.technical_analysis.labels.discrete |
ta_cross_over | pandas_ta_quant.technical_analysis.labels.discrete |
ta_cross_under | pandas_ta_quant.technical_analysis.labels.discrete |
ta_decimal_year | pandas_ta_quant.technical_analysis.indicators.time |
ta_delta_hedged_price | pandas_ta_quant.technical_analysis.normalizer |
ta_div | pandas_ta_quant.technical_analysis.math |
ta_draw_down | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_edge_detect | pandas_ta_quant.technical_analysis.forecast.support |
ta_ema | pandas_ta_quant.technical_analysis.filters |
ta_ewma_covariance | pandas_ta_quant.technical_analysis.covariances |
ta_fibbonaci_retracement | pandas_ta_quant.technical_analysis.forecast.support |
ta_future_bband_quantile | pandas_ta_quant.technical_analysis.labels.discrete |
ta_future_crossings | pandas_ta_quant.technical_analysis.labels.discrete |
ta_future_multi_bband_quantile | pandas_ta_quant.technical_analysis.labels.discrete |
ta_future_multi_ma_quantile | pandas_ta_quant.technical_analysis.labels.discrete |
ta_future_pct_to_current_mean | pandas_ta_quant.technical_analysis.labels.continuous |
ta_gaf | pandas_ta_quant.technical_analysis.encoders.gramian_angular_field |
ta_gap | pandas_ta_quant.technical_analysis.indicators.multi_object |
ta_garch11 | pandas_ta_quant.technical_analysis.forecast.volatility |
ta_has_opening_gap | pandas_ta_quant.technical_analysis.labels.discrete |
ta_hmm | pandas_ta_quant.technical_analysis.forecast.predictive_indicator |
ta_inverse | pandas_ta_quant.technical_analysis.encoders.resample |
ta_inverse_gasf | pandas_ta_quant.technical_analysis.encoders.gramian_angular_field |
ta_is_opening_gap_closed | pandas_ta_quant.technical_analysis.labels.discrete |
ta_log_returns | pandas_ta_quant.technical_analysis.normalizer |
ta_ma_decompose | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_ma_ratio | pandas_ta_quant.technical_analysis.normalizer |
ta_macd | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_mean_returns | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_mgarch_covariance | pandas_ta_quant.technical_analysis.covariances |
ta_mom | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_moving_covariance | pandas_ta_quant.technical_analysis.covariances |
ta_multi_bbands | pandas_ta_quant.technical_analysis.filters |
ta_multi_ma | pandas_ta_quant.technical_analysis.filters |
ta_ncdf_compress | pandas_ta_quant.technical_analysis.normalizer |
ta_normalize_row | pandas_ta_quant.technical_analysis.normalizer |
ta_ohl_trend_lines | pandas_ta_quant.technical_analysis.forecast.support |
ta_one_hot | pandas_ta_quant.technical_analysis.encoders.one_hot |
ta_one_hot_encode_discrete | pandas_ta_quant.technical_analysis.encoders.one_hot |
ta_performance | pandas_ta_quant.technical_analysis.normalizer |
ta_poly_coeff | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_ppo | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_realative_candles | pandas_ta_quant.technical_analysis.encoders.candles |
ta_rescale | pandas_ta_quant.technical_analysis.normalizer |
ta_returns | pandas_ta_quant.technical_analysis.normalizer |
ta_rnn | pandas_ta_quant.technical_analysis.encoders.auto_regression |
ta_roc | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_rsi | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_sarimax | pandas_ta_quant.technical_analysis.forecast.predictive_indicator |
ta_sharpe_ratio | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_sinusoidal_week | pandas_ta_quant.technical_analysis.indicators.time |
ta_sinusoidal_week_day | pandas_ta_quant.technical_analysis.indicators.time |
ta_slope | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_sma | pandas_ta_quant.technical_analysis.filters |
ta_sma_price_ratio | pandas_ta_quant.technical_analysis.normalizer |
ta_sortino_ratio | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_sparse_covariance | pandas_ta_quant.technical_analysis.covariances |
ta_std_ret_bands | pandas_ta_quant.technical_analysis.bands |
ta_std_ret_bands_indicator | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_stddev | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_tr | pandas_ta_quant.technical_analysis.indicators.multi_object |
ta_trend_lines | pandas_ta_quant.technical_analysis.forecast.support |
ta_trix | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_ultimate_osc | pandas_ta_quant.technical_analysis.indicators.multi_object |
ta_up_down_volatility_ratio | pandas_ta_quant.technical_analysis.indicators.single_object |
ta_volume_as_time | pandas_ta_quant.technical_analysis.encoders.volume |
ta_wilders | pandas_ta_quant.technical_analysis.filters |
ta_williams_R | pandas_ta_quant.technical_analysis.indicators.multi_object |
ta_z_norm | pandas_ta_quant.technical_analysis.normalizer |
ta_zscore | pandas_ta_quant.technical_analysis.indicators.single_object |
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pandas-ta-quant-0.2.7.tar.gz
(38.5 kB
view details)
File details
Details for the file pandas-ta-quant-0.2.7.tar.gz
.
File metadata
- Download URL: pandas-ta-quant-0.2.7.tar.gz
- Upload date:
- Size: 38.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8b7bd0ec32b0368ae83e5ee4dc1ff2bf500e870cc09e43e18da404e3da4bfad3 |
|
MD5 | ff7faeeb259414a829628da28d5a58d9 |
|
BLAKE2b-256 | 3a056a39a1a6621ac353cf54f68c536a9398d7f24d3c38e6dbfe211f62862c4c |