Library for converting pandas dataframes to pydantic models
Project description
pandas-to-pydantic
WARNING: Library is currently unstable and in beta.
This library provides functions for converting Pandas Dataframes to Pydantic Models. This allows you to easily transform data in a table-like format into a json-like format. Pydantic Model annotations are matched with Pandas Dataframe columns. Supports models nested in lists.
Table of Contents
Installation
pip install pandas-to-pydantic
Example 1
This example will show how to convert data from a flat structure (.csv file, pandas dataframe) to a hierarchical structure (json file, pydantic models)
BookID | Title | AuthorName | Genre | PublishedYear |
---|---|---|---|---|
1 | Harry Potter and the Philosopher's Stone | J.K. Rowling | Fantasy | 1997 |
2 | Harry Potter and the Chamber of Secrets | J.K. Rowling | Fantasy | 1998 |
3 | 1984 | George Orwell | Dystopian Fiction | 1949 |
4 | Animal Farm | George Orwell | Political Satire | 1945 |
5 | Pride and Prejudice | Jane Austen | Romance | 1813 |
7 | Murder on the Orient Express | Agatha Christie | Mystery | 1934 |
9 | Adventures of Huckleberry Finn | Mark Twain | Adventure | 1884 |
10 | The Adventures of Tom Sawyer | Mark Twain | Adventure | 1876 |
11 | The Hobbit | J.R.R. Tolkien | Fantasy | 1937 |
12 | The Lord of the Rings | J.R.R. Tolkien | Fantasy | 1954 |
import pandas as pd
from pydantic import BaseModel
from pandas_to_pydantic import dataframe_to_pydantic
# Declare pydantic models
class Book(BaseModel):
BookID: int
Title: str
AuthorName: str
Genre: str
PublishedYear: int
# Update this to your your file path
book_data = pd.read_csv(FILE_PATH)
# Convert pandas dataframe to a pydantic root model
book_list_root = dataframe_to_pydantic(book_data, Book)
dataframe_to_pydantic
returns a pydantic RootModel
. Data can be accessed using its attributes and methods. https://docs.pydantic.dev/latest/api/root_model/
For example:
# Access data as a list of pydantic models
book_list_root.root
Returns (output shortened):
[Book(BookID=1, Title="Harry Potter and the Philosopher's Stone", AuthorName='J.K. Rowling', Genre='Fantasy', PublishedYear=1997),
Book(BookID=2, Title='Harry Potter and the Chamber of Secrets', AuthorName='J.K. Rowling', Genre='Fantasy', PublishedYear=1998),
Book(BookID=3, Title='1984', AuthorName='George Orwell', Genre='Dystopian Fiction', PublishedYear=1949),
...]
For example:
# Access data as a list of dict
book_list_root.model_dump()
Returns (output shortened):
[{'BookID': 1,
'Title': "Harry Potter and the Philosopher's Stone",
'AuthorName': 'J.K. Rowling',
'Genre': 'Fantasy',
'PublishedYear': 1997},
{'BookID': 2,
'Title': 'Harry Potter and the Chamber of Secrets',
'AuthorName': 'J.K. Rowling',
'Genre': 'Fantasy',
'PublishedYear': 1998},
{'BookID': 3,
'Title': '1984',
'AuthorName': 'George Orwell',
'Genre': 'Dystopian Fiction',
'PublishedYear': 1949},
...]
Example 2
In this example, Pydantic models are nested using the list
type annotation. When there are multiple layers of nesting, unique id fields should be provided for each list field with a child model using id_column_map
.
Here, the unique id column for the Genre
model is Genre
, and the unique id column for the Author
model is AuthorName
. Keys in id_column_map
can be the model name or field name. Values in id_column_map
are the unique column name.
For example:
class Book(BaseModel):
BookID: int
Title: str
PublishedYear: int
class Author(BaseModel):
AuthorName: str
BookList: list[Book]
class Genre(BaseModel):
Genre: str
AuthorList: list[Author]
dataframe_to_pydantic(
data=bookData,
model=Genre,
id_column_map={"Genre": "Genre", "AuthorList": "AuthorName"},
).model_dump()
Returns (output shortened)
[{'Genre': 'Fantasy',
'AuthorList': [{'AuthorName': 'J.K. Rowling',
'BookList': [{'BookID': 1,
'Title': "Harry Potter and the Philosopher's Stone",
'PublishedYear': 1997},
{'BookID': 2,
'Title': 'Harry Potter and the Chamber of Secrets',
'PublishedYear': 1998}]},
{'AuthorName': 'J.R.R. Tolkien',
'BookList': [{'BookID': 11, 'Title': 'The Hobbit', 'PublishedYear': 1937},
{'BookID': 12,
'Title': 'The Lord of the Rings',
'PublishedYear': 1954}]}]},
{'Genre': 'Dystopian Fiction',
'AuthorList': [{'AuthorName': 'George Orwell',
'BookList': [{'BookID': 3, 'Title': '1984', 'PublishedYear': 1949}]}]},
...]
dataframe_to_pydantic
Args
- data (
pandas.DataFrame
)- Dataframe with columns matching fields in the pydantic model
- When the pydantic model includes nested models, it is assumed that the first column is unique. See Example 2
- model (
pydantic._internal._model_construction.ModelMetaClass
)- Accepts classes created with pydantic.BaseModel
- Supports nested models in lists
- Annotation names must match columns in the dataframe
- id_column_map(
dict[str,str]
)- Required when nesting Pydantic models
- Each key corresponds with field name or model name
- Each value corresponds with the unique id column for the nested Pydantic model
- For the parent level model, use the model name as key
Returns
- model_list (
pydantic.RootModel
)- Pydantic root model created as a list of the input model
- https://docs.pydantic.dev/latest/api/root_model/
Advanced Example
This example uses a larger data set with additional nesting.
import pandas as pd
from pydantic import BaseModel
from pandas_to_pydantic import dataframe_to_pydantic
# Declare pydantic models
class LibaryDetail(BaseModel):
LibraryName: str
Location: str
EstablishedYear: int
BookCollectionSize: int
class Author(BaseModel):
AuthorID: int
AuthorName: str
AuthorBirthdate: str
class Book(BaseModel):
BookID: int
Title: str
Genre: str
PublishedYear: int
class Library(BaseModel):
LibraryID: int
Detail: LibaryDetail
AuthorList: list[Author]
BookList: list[Book]
# Input data is a pandas dataframe
data = pd.read_csv(FILE_PATH)
# Convert pandas dataframe to a pydantic root model
library_list_root = dataframe_to_pydantic(
data,
Library,
{
"Library": "LibraryID",
"BookList": "BookID",
"AuthorList": "AuthorID",
},
)
# Access data as a list of pydantic models
library_list_root.root
# Access data as a list of dict
library_list_root.model_dump()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pandas_to_pydantic-0.1.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f0717eaed5868e56495381b92f92bbae953c37ff12e82750fcf78daeb1a45977 |
|
MD5 | 6fe76efb2fe9e4d6c3f38823a84726c6 |
|
BLAKE2b-256 | 21895ac177fe457569026bc913e0315ecc404a0d918a434d5c413f3f5ac324de |