Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pandas-0.15.0.zip (4.9 MB view details)

Uploaded Source

pandas-0.15.0.tar.gz (4.5 MB view details)

Uploaded Source

Built Distributions

pandas-0.15.0.win-amd64-py3.4.exe (3.6 MB view details)

Uploaded Source

pandas-0.15.0.win-amd64-py3.3.exe (3.6 MB view details)

Uploaded Source

pandas-0.15.0.win-amd64-py3.2.exe (3.7 MB view details)

Uploaded Source

pandas-0.15.0.win-amd64-py2.7.exe (3.7 MB view details)

Uploaded Source

pandas-0.15.0.win-amd64-py2.6.exe (3.7 MB view details)

Uploaded Source

pandas-0.15.0.win32-py3.4.exe (3.5 MB view details)

Uploaded Source

pandas-0.15.0.win32-py3.3.exe (3.5 MB view details)

Uploaded Source

pandas-0.15.0.win32-py3.2.exe (3.5 MB view details)

Uploaded Source

pandas-0.15.0.win32-py2.7.exe (3.5 MB view details)

Uploaded Source

pandas-0.15.0.win32-py2.6.exe (3.5 MB view details)

Uploaded Source

pandas-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.15.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.15.0-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.2m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.15.0.zip.

File metadata

  • Download URL: pandas-0.15.0.zip
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.15.0.zip
Algorithm Hash digest
SHA256 12fb5ad9d2df6a7dd2431ccca281ee374cece0a79be8c01794b292e188b2da83
MD5 dfae5e83cf1314038102b45994d05752
BLAKE2b-256 48a3187c91aed1bae28d1d09e4cff23681797a19b328a2c1db85352d0c93c175

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.tar.gz.

File metadata

  • Download URL: pandas-0.15.0.tar.gz
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.15.0.tar.gz
Algorithm Hash digest
SHA256 53be655079f978831dbb10c69a7656d3df6de673948896e170f08c3dac957cf0
MD5 eb2427593747da949aa4ff12aa1e048d
BLAKE2b-256 12686e4fb2bd8bbfcb92a1b6b755639be5f193c58726150adc11844d53e9a752

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win-amd64-py3.4.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win-amd64-py3.4.exe
Algorithm Hash digest
SHA256 04269106c74c8878aece9b5d3a97a09496163fbba954c6ef509f086c32aa2ffa
MD5 729971f4aefe2c0dd82ad9597fa3a9e3
BLAKE2b-256 46e2c7ebc0e51d895ed890dc6f517578505a7e0e8b3ee57c7b3535185f755e3a

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win-amd64-py3.3.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win-amd64-py3.3.exe
Algorithm Hash digest
SHA256 302f67ca60d947ac9e8a3fcb463165907a85bc1acf06531a3e8b756d95af9b4b
MD5 cc6ab064c5bb5cc17a5a829f32c67269
BLAKE2b-256 ac323696e5dcc07d09df89c5d65e61beff389e48baaba196cc6f6ee8b0bbce55

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win-amd64-py3.2.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win-amd64-py3.2.exe
Algorithm Hash digest
SHA256 cc3341e8076cfbc84ab871ed7f28cd03ad5d1c5811b3ba19ecac61d045d007fc
MD5 06ec5974a4d25092d7033014fca4a293
BLAKE2b-256 4c7b25143ee74fad3a4bd65868aa256519862846a8ddbab2f583d193cbe32fc3

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 a2f5adbdcdaae41cf0ccd578767ff764925cf37cd7843d95900f09f7b1c60b6b
MD5 4b88dd5b0a156a8baf6883bf6df4d6eb
BLAKE2b-256 e09b67b6550b9326fb79bd3f49023c52b2b8d012bea113094e979e924298eca8

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win-amd64-py2.6.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win-amd64-py2.6.exe
Algorithm Hash digest
SHA256 3caf2a4afe31d7cf048f7cf503d1ef4e7e1f34d1a2878c6c951530ac0a31175a
MD5 2dd7131f21e89dd1a81d55d0ca1e94ba
BLAKE2b-256 8e3c30df22047416e2eba4e9940dee0b10ff6e0d3c3e843161549dede4207056

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win32-py3.4.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win32-py3.4.exe
Algorithm Hash digest
SHA256 627bd7c6891bd7a37ad0c21ca28ae6e4bcef44b56fbdf992f9064f1cfcaea3f3
MD5 a130494a648e0615685c5ff430a50d56
BLAKE2b-256 bc7cd726c59b324b03eaa6dbe0391aa8e076512040a7cab77fcbc34e52659e53

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win32-py3.3.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win32-py3.3.exe
Algorithm Hash digest
SHA256 d346da36d80e2035133c8aa74cc48dbdebe27668755f24c84a4701ee26b39883
MD5 9922b1d72f83e4e792dcd922fd0153af
BLAKE2b-256 ab9b933db320c5c7663d777cd25c2051e8419e41bc1fc29ec3aed2d6941e33d5

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win32-py3.2.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win32-py3.2.exe
Algorithm Hash digest
SHA256 2309b6a4cb1f5824988fed1e14c81eb90a461ec945717b451bfda501b1fe784f
MD5 15f0690440e2fe56f742a7d4c0e3cbcf
BLAKE2b-256 138f89d7333eb07af322c0a076be544c52c640eb72cf479045409696668c2549

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win32-py2.7.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win32-py2.7.exe
Algorithm Hash digest
SHA256 75afad68b32633882d6ac6a53acf801b0ecc5615eb371ce2598298702e35ca2f
MD5 a6019f5c7b1a280bb987a8fdc7a99c1e
BLAKE2b-256 81fa52f790e15698c2be5a3a673776f6579578fee162f864f3bf471485242078

See more details on using hashes here.

File details

Details for the file pandas-0.15.0.win32-py2.6.exe.

File metadata

File hashes

Hashes for pandas-0.15.0.win32-py2.6.exe
Algorithm Hash digest
SHA256 a4223517cd44537e5bb4f0883173f546304689b1b4ec4341e087ca6cd04c0673
MD5 caa3e97d15c4c376f829d4b759cd6928
BLAKE2b-256 214561a1e55b09bc720bf3f58f395c133b9bdf2d3a9fdeda44512a1751a67564

See more details on using hashes here.

File details

Details for the file pandas-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.15.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82e5b386722e1a69300394fac980383a0ec9c719a15170535b14b8de0add502d
MD5 5a1dd06769f3964bdd88f15b62f4d778
BLAKE2b-256 acbf164bac4b56998ad1a40a97e1770ff1bd423936925bd29659f0ce5748aad3

See more details on using hashes here.

File details

Details for the file pandas-0.15.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.15.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 94818d376d3de43c489a22efbab43933ef10df5f13e2fd6cf492dcb6a09c076c
MD5 8ccf74ed80320551fb245d3badf6ba4a
BLAKE2b-256 7d9b0f30819ee8e2f51749fb8c3ec256c929ae8e27c2f836e5eb368959d6c4b1

See more details on using hashes here.

File details

Details for the file pandas-0.15.0-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.15.0-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e4198a1093666e30dd079c7f8f4386f3a758381cd02574035c9a0d220a783c7
MD5 f36d0f8ab6a55c0cdcff3c221cf686a5
BLAKE2b-256 83fde555f5a9e1380806df4b77d6bc11ac1c0b7143f986533568269b9c5f87b0

See more details on using hashes here.

File details

Details for the file pandas-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.15.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41dbcce49128d19f4a1f3a7918f2cf86f9c3f599d9b39a48f1fd5e197432c548
MD5 591f491974748f97be81adbfbcf1216a
BLAKE2b-256 ba76c405dad38089c0040cf360115617d872e19e16f8147c72064a3a99d94454

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page