Skip to main content

Powerful data structures for data analysis, time series, and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.23.0.tar.gz (13.1 MB view details)

Uploaded Source

Built Distributions

pandas-0.23.0-cp36-cp36m-win_amd64.whl (10.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pandas-0.23.0-cp36-cp36m-win32.whl (9.2 MB view details)

Uploaded CPython 3.6m Windows x86

pandas-0.23.0-cp36-cp36m-manylinux1_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.6m

pandas-0.23.0-cp36-cp36m-manylinux1_i686.whl (10.7 MB view details)

Uploaded CPython 3.6m

pandas-0.23.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.0-cp35-cp35m-win_amd64.whl (10.1 MB view details)

Uploaded CPython 3.5m Windows x86-64

pandas-0.23.0-cp35-cp35m-win32.whl (9.1 MB view details)

Uploaded CPython 3.5m Windows x86

pandas-0.23.0-cp35-cp35m-manylinux1_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.5m

pandas-0.23.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.0-cp27-cp27mu-manylinux1_x86_64.whl (11.8 MB view details)

Uploaded CPython 2.7mu

pandas-0.23.0-cp27-cp27mu-manylinux1_i686.whl (10.7 MB view details)

Uploaded CPython 2.7mu

pandas-0.23.0-cp27-cp27m-win_amd64.whl (10.2 MB view details)

Uploaded CPython 2.7m Windows x86-64

pandas-0.23.0-cp27-cp27m-win32.whl (9.4 MB view details)

Uploaded CPython 2.7m Windows x86

pandas-0.23.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (17.4 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.23.0.tar.gz.

File metadata

  • Download URL: pandas-0.23.0.tar.gz
  • Upload date:
  • Size: 13.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.23.0.tar.gz
Algorithm Hash digest
SHA256 84ab1d50590cb2d9554211f164dc1b1a216bc94da2ba922aed2690c83f248fd9
MD5 5df7c8578ce4e98671a7e721603a8e39
BLAKE2b-256 45121e1ba99fb65df9f7f3724d3232feef35cc044d18604d57492d561e90219f

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 29dde0874d1efb8a346f8d919b0530a9ae788ad1003752376133e38df09e6fcb
MD5 083d033b0762a6022878b815a6d23549
BLAKE2b-256 8a006d84ede36733123656e5814de7d872af38fbac8b0c231548e9e6aa3f4493

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 98054c04318ba46bb81433230c2e5fab6a68df916ccb5355d428907bfb16b257
MD5 351be067d7df79673611a8017a3db2d4
BLAKE2b-256 a2f19c90efc7a128c3336bca8ceb38374c2ba97b90d590e3bb9a2cca1c87fda9

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 29960ea1783c59fe86b323799b130592149e0f7bb739149e7fc512b0272d9fc3
MD5 e26622d45a6cb4843ce40380e6d91775
BLAKE2b-256 69ec8ff0800b8594691759b78a42ccd616f81e7099ee47b167eb9bbd502c02b9

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9e5ee41d1550ec36093c95e30644e313df4b57c1cdead545754d9c113aecbbb5
MD5 eb697182e56206b8cefd0c611ec00dec
BLAKE2b-256 e4efa8e35a0903d02babc8af6ee052b5b2c10051c9639cf3a3b4c41394a49240

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d4495aba61060d87c634fc777ac15aecd1d176987e5ed0585a3ed7e2f4e6c1f7
MD5 951ea4e2d3ad8642f4dafb1d62f74ee8
BLAKE2b-256 5907a6c964fe735572139f270983896fb98a639ff7cedc9bb6568868ab75db6b

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 295cf212054b28f1d111f3ffff932a012601558424ec892f2450d6197f6eeb92
MD5 1e8663db8a7d102918d62018b503b8fd
BLAKE2b-256 31f100c3b257ffae4325230bf63abf32ba20e71a6e6fa81473aa7ead7e94aafa

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 7261b3567804a70714cc2591e2f7f1e372379db9e140f9d7ffb4b8884eaa48f7
MD5 e852d7852fb3ecdb661ce51545bace64
BLAKE2b-256 2ba3b3025bbe18f85a7bfaf73425142f19d318345850157dd42cd3b057354386

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 758b8f6c68bc99b2eb64e57092d3aa07bd68a774e92e7686e473e0d9c86a2309
MD5 3b7ebc2d75c62724e407ca792ea9a1f6
BLAKE2b-256 a5c143966a4ce89d0c64111f46c6364ed57d6d87e6fab7d685dca06197a19cf7

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8398d7a47ae667a639ac4ee6724d7ef98602b5ff2b10b5b4d5e6ab45a8d596d2
MD5 05d11cb6d7321f1ebc4cd960e6c3cadd
BLAKE2b-256 b88db0ee9375fb5a3690cd700727dabac86f9b7f3bc9710d2cd4c8b2123d9edb

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d5f72c8239e46cfcc363c7e532a474b7ea3d8892b7b6e5ec0da6b3ebae2a07d3
MD5 7487c6f9b3ba15ae175bf40246a558d3
BLAKE2b-256 76fa3bb6b95bf389762c7690ffba2250b6a8a1cbcc321f8cfb864116c98df831

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5de7275fc7222211dcac603ea81f1e143c45f8ec41d2e21df71aad0c95c1097c
MD5 5aa3d38560c8e8cf9baf5b1301c4b3ba
BLAKE2b-256 829667781783df9895f0b165bcf1102e4e87c8ddb9a938e043455c825adeadb8

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 2d6b7b152a6ba44627c60df291f773c4438df01653abcbec7fc556d6039f1705
MD5 ee3bf640dce91d9b97f31c1e077426e1
BLAKE2b-256 3b4b2e5238aad52b76c9c4d321e9f2f7c4d36a10ef321fade4e28a9d29f8c8ae

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 835c5a2aeaa3cb5ef2a1d771c75ee3a73d6ad1b82cfc54677c8f863c75fa51bd
MD5 1205e7810cc5527a0b731282eac90ad9
BLAKE2b-256 83290e5c5412e498230ea53d93d8da8d11b3258a063893bbc474f6726a013955

See more details on using hashes here.

File details

Details for the file pandas-0.23.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d88f484a25ac212fd720b5f9b9686e83f86df2b091b51f4b7b1d9089bd842f79
MD5 fc0923489f6effbf71edfcf83e8b87a1
BLAKE2b-256 8a3c0c3bab06331d125c419dc898d92d7153c2d5ae70a4f2a05244db356ffcd9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page