Skip to main content

Powerful data structures for data analysis, time series, and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.23.1.tar.gz (13.1 MB view details)

Uploaded Source

Built Distributions

pandas-0.23.1-cp36-cp36m-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

pandas-0.23.1-cp36-cp36m-win32.whl (9.5 MB view details)

Uploaded CPython 3.6m Windows x86

pandas-0.23.1-cp36-cp36m-manylinux1_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.6m

pandas-0.23.1-cp36-cp36m-manylinux1_i686.whl (10.7 MB view details)

Uploaded CPython 3.6m

pandas-0.23.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.1-cp35-cp35m-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.5m Windows x86-64

pandas-0.23.1-cp35-cp35m-win32.whl (9.4 MB view details)

Uploaded CPython 3.5m Windows x86

pandas-0.23.1-cp35-cp35m-manylinux1_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.5m

pandas-0.23.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.1-cp27-cp27mu-manylinux1_x86_64.whl (11.8 MB view details)

Uploaded CPython 2.7mu

pandas-0.23.1-cp27-cp27mu-manylinux1_i686.whl (10.7 MB view details)

Uploaded CPython 2.7mu

pandas-0.23.1-cp27-cp27m-win_amd64.whl (10.2 MB view details)

Uploaded CPython 2.7m Windows x86-64

pandas-0.23.1-cp27-cp27m-win32.whl (9.4 MB view details)

Uploaded CPython 2.7m Windows x86

pandas-0.23.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (17.4 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.23.1.tar.gz.

File metadata

  • Download URL: pandas-0.23.1.tar.gz
  • Upload date:
  • Size: 13.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.23.1.tar.gz
Algorithm Hash digest
SHA256 50b52af2af2e15f4aeb2fe196da073a8c131fa02e433e105d95ce40016df5690
MD5 95554bdc5991831030055dc26393554f
BLAKE2b-256 2785f9e4f0e47a6f1410b1d737b74a1764868e9197e3197a2be843507b505636

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fcc63e8134516e93e16eb4ceac9afaa51f4adc5bf58efddae7cbc562f5b77dd0
MD5 eec5e2a1340ea1104c41aee6a92d6c46
BLAKE2b-256 ad0bf65a63cccc5e37a7af983fc87a8c9e56feb4998d8877f8f2af21f40bcf3c

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 720daad75b5d35dd1b446842210c4f3fd447464c9c0884972f3f12b213a9edd1
MD5 65e666dc6bc9cf1c79ec9d9f7e17fc9e
BLAKE2b-256 c0560b601d8ffe3ac3d2ea2fdfb5d5cd581e2dcbe8309242e23dffa25b9fd93f

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d2a071de755cc8ee7784e1b4c7b9b643d951d35c8adea7d64fe7c57cff9c47a7
MD5 90d0f3d04beaec3df25f77ec5bbc1fa4
BLAKE2b-256 57eb6ab533ea8e35e7dd159af6922ac1123d4565d89f3926ad9a6aa46530978f

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2fb7c63138bd5ead296b18b2cb6abd3a394f7581e5ae052b02b27df8244b03ca
MD5 134d38f9e3be36dfff936f7de26515f3
BLAKE2b-256 f24c94e36202b24d1765ecd7eabb10b06f37313942f419739a9aedcf31ebaaaf

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 437a6e906a6717a9ed2627cf6e7895b63dfaa0172567cbd75a553f55cf78cc17
MD5 ed8c7b31da05c9e7dd733f1dda73359c
BLAKE2b-256 5d454d62347c2ce66eb13f05f47b0337d4a5f70bb826e9937668e4593764f545

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 211cfdb9f72f26d2ede21c751d27e08fed4434d47fb9bb82ebc8ff753888b8b6
MD5 f54d11dcf0c56aa5b872867b81664141
BLAKE2b-256 8f92531232882acdc5585ef36d63e8a36e6ca0d7dd59cfe61d5e32eb1ed45012

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 d8154c5c68713a82461aba735832f0b4692be8a45a0a340a303bf90d6f80f36f
MD5 121e20087213a2b2904b93548b72d2ce
BLAKE2b-256 a868e8fa32727aa99c37aacff16d84d2d6c4d5c8760f51236f599245f5b8ad81

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 372435456c349a8d39ff001967b161f6bd29d4c3de145a4cf9b366648defbb1f
MD5 baa3d122acbcdb8c1f114a0333d1080a
BLAKE2b-256 5a9fcea5f2fdf962724c30b306a9bdb60f1800b9a14e0388584540b4a80c7ae4

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b4fb71acbc2709b8f5993cb4b5445d8182864f11c39787e317aae39f21206270
MD5 5b75b5fce924419c0ddeab751d8cd744
BLAKE2b-256 84f7cb415d7b43a17e3960e32393dbcd41752057733e02fa90970c687eb7a58a

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 28fd087514616549a0e3259cd68ac88d7eaed6bd3062017a7f312e27941266bd
MD5 dcefa593d85c3b5ccf32555c1b7788d1
BLAKE2b-256 9d5c052a3aef6b5e337eca210ca668b78707c4fca762dcc3a0b7f9f3420f1e97

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e1b86f7c55467ce1f6c12715f2fd1817f4a909b5c8c39bd4b5d2415ef2b04bd8
MD5 6ff0a3b51f6f11cbbbdfc52c8af37b21
BLAKE2b-256 1c2a9635141e32bb327511df32287aca6b3cd01dde51a1c977ca051cae7a3945

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 b704fd73022342cce612996de495a16954311e0c0cf077c1b83d5cf0b9656a60
MD5 bc89a7690f3c291d6e08460b6d61db32
BLAKE2b-256 5f92a2844ca9e9a9998a8218810a667be730a035bd56db64d2d9f66e98e7c7ca

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 cbbecca0c7af6a2160b2d6ba30becc286824a98c61dcc6a41fada664f226424c
MD5 80ad8517670d3b3574b2be973ade42ae
BLAKE2b-256 575e669effec08e4aa9ed2cf59866ba743cea970a87bcde8b5019a5ed8a8258c

See more details on using hashes here.

File details

Details for the file pandas-0.23.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3790a3348ab0f416e58061d21693cb662fbb2f638001b94bf2b2199fedc1b1c2
MD5 398fee1879280a4ef45e4be47feb8b80
BLAKE2b-256 b85e06a8bc11e283da412f0de543d899c9d5dab6779748042d78422d5c0dcb7a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page