Skip to main content

Powerful data structures for data analysis, time series, and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.23.3.tar.gz (10.5 MB view details)

Uploaded Source

Built Distributions

pandas-0.23.3-cp37-cp37m-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pandas-0.23.3-cp37-cp37m-win32.whl (6.8 MB view details)

Uploaded CPython 3.7m Windows x86

pandas-0.23.3-cp37-cp37m-manylinux1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m

pandas-0.23.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.3-cp36-cp36m-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

pandas-0.23.3-cp36-cp36m-win32.whl (6.6 MB view details)

Uploaded CPython 3.6m Windows x86

pandas-0.23.3-cp36-cp36m-manylinux1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m

pandas-0.23.3-cp36-cp36m-manylinux1_i686.whl (7.8 MB view details)

Uploaded CPython 3.6m

pandas-0.23.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.3-cp35-cp35m-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.5m Windows x86-64

pandas-0.23.3-cp35-cp35m-win32.whl (6.6 MB view details)

Uploaded CPython 3.5m Windows x86

pandas-0.23.3-cp35-cp35m-manylinux1_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.5m

pandas-0.23.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.3-cp27-cp27mu-manylinux1_x86_64.whl (8.9 MB view details)

Uploaded CPython 2.7mu

pandas-0.23.3-cp27-cp27mu-manylinux1_i686.whl (7.8 MB view details)

Uploaded CPython 2.7mu

pandas-0.23.3-cp27-cp27m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 2.7m Windows x86-64

pandas-0.23.3-cp27-cp27m-win32.whl (6.5 MB view details)

Uploaded CPython 2.7m Windows x86

pandas-0.23.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.23.3.tar.gz.

File metadata

  • Download URL: pandas-0.23.3.tar.gz
  • Upload date:
  • Size: 10.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.23.3.tar.gz
Algorithm Hash digest
SHA256 9cd3614b4e31a0889388ff1bd19ae857ad52658b33f776065793c293a29cf612
MD5 ed532e0cdc2aebe190f01e2ae84162f6
BLAKE2b-256 3e5682c4d4c049294f87ebd05b65fdcbc9ed68bd23fb0a7e4469caf9a75d199f

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1a62a237fb7223c11d09daaeaf7d15f234bb836bfaf3d4f85746cdf9b2582f99
MD5 4c2f7408503f4cfe251db8a4d456ec86
BLAKE2b-256 6bb1cdcbfff4cb46080451c7f16bb9f0649cf8d2c4d7c02fc072521a75c93741

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 174543cd68eaee60620146b38faaed950071f5665e0a4fa4adfdcfc23d7f7936
MD5 094dcf0df436ae7a624b5c5de355b59a
BLAKE2b-256 a9e8ca7637c51767809cd7328dd01e246b8f2ec0fde566c9b7440b91d9a33460

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ff5ef271805fe877fe0d1337b6b1861113c44c75b9badb595c713a72cd337371
MD5 137ce353144559ce27678e321ec133c7
BLAKE2b-256 637727b920abc3eea0bfec9bd027dbdbbc7b5121b80806de20d331452ef23285

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e8c62ab16feeda84d4732c42b7b67d7a89ad89df7e99efed80ea017bdc472f26
MD5 489d9721f8522a9f60cdf028f07e240b
BLAKE2b-256 5d40a87f29155cebd25c345e71bd9251f591258f888d553ee42210528546cee8

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cbb074efb2a5e4956b261a670bfc2126b0ccfbf5b96b6ed021bc8c8cb56cf4a8
MD5 ff3a7d8452fcc64517ebb9d42be39d78
BLAKE2b-256 07545379878cd2ccabd08ab9ce356e204a5bb46c870f203c93c808c22dd63125

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b90e5d5460f23607310cbd1688a7517c96ce7b284095a48340d249dfc429172e
MD5 5bc239d5995a1406e564418b72dafe45
BLAKE2b-256 a13dd8fece11f6dc9bd332bda6f412be68cf3d505dde280d34e4465d7b71b63c

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4c5f76fce8a4851f65374ea1d95ca24e9439540550e41e556c0879379517a6f5
MD5 d5467d45de40404f05f19d0dc1f5cac8
BLAKE2b-256 f4cba801eaf624e36fffaa6cf1f4597a1e4b0742c200ed928e689c58fb3cb811

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 894216edaf7dd0a92623cdad423bbec2a23fc06eb9c85483e21876d1ef8f47e9
MD5 cdbe83d33291cba4f9f06bd521a7fa12
BLAKE2b-256 d37b9e0657f978400b0e565512267c393c601c81fe5740c840944c3a7b3297e2

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 683e0cc8c7faececbbc06aa4735709a07abad106099f165730c1015da916adec
MD5 8c968c017171e3fd03f8c14825cda5dd
BLAKE2b-256 d8bad2c6578afca709e211ac1cd836a66a6a042f1a773a970be345d9d08be426

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 77cd1b485c6a860b950ab3a85be7b5683eaacbc51cadf096db967886607d2231
MD5 5deaeeb157a612b9bca36f6e7699409f
BLAKE2b-256 24f1bbe61db3ab675ae612d5261e69cff05f1ff0a7638469a9faa1c9cdc1dcd5

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 05ac350f8a35abe6a02054f8cf54e0c048f13423b2acb87d018845afd736f0b4
MD5 62533230e3d31c1d984c68fe448d9151
BLAKE2b-256 999621fa3b1bbbf304d69cc37e3b953afc869586e8a9d0880b59cff332afb06c

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9d79e958adcd037eba3debbb66222804171197c0f5cd462315d1356aa72a5a30
MD5 dc2f52485159b8e8b024bf5fdbc80ddf
BLAKE2b-256 1dcb1cc27b57855a7f7c25965ab257e2bf251589bfe450e2cb23820b11a674a6

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bc80c13ffddc7e269b706ed58002cc4c98cc135c36d827c99fb5ca54ced0eb7a
MD5 6da09cc5f23754b23166b8b0af01f1bb
BLAKE2b-256 d73e0600ead8f8c56c927025e2deac47c97f8e3eb06341a76b49b1c0d03638fb

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9331e20a07360b81d8c7b4b50223da387d264151d533a5a5853325800e6631a4
MD5 0f94c6a925257fc4c52fdf31bb67c491
BLAKE2b-256 65b28c3a7fc10f581d0ef196e54ba13248e09b25012ab3b213cda83f8f5e7678

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 33825ad26ce411d6526f903b3d02c0edf627223af59cf4b5876aa925578eec74
MD5 b0013579789c10b58691d1f7cee54f24
BLAKE2b-256 6588d9acdbaf9840d75fe38368c87ca422b5c3ebcbdf2aeab945ef26edd7b25e

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 67504a96f72fb4d7f051cfe77b9a7bb0d094c4e2e5a6efb2769eb80f36e6b309
MD5 ce5cc1e93814a14ae2ed54395e75ecc8
BLAKE2b-256 906ff8fa87558894e6970a5440694fc58de88269c63e4722c35448b67cc3948f

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 2c1ed1de5308918a7c6833df6db75a19c416c122921824e306c64a0626b3606c
MD5 5dd92a0524f77eb9bbb77ebd270e296b
BLAKE2b-256 75aa415ec8ad123ab6763d24abe8456ca394510500df7f9195661efa08cb3462

See more details on using hashes here.

File details

Details for the file pandas-0.23.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 814f8785f1ab412a7e9b9a8abb81dfe8727ebdeef850ecfaa262c04b1664000f
MD5 789f4ab4c35cc2661e0b04076677c873
BLAKE2b-256 589af571a032f5f2bf5b8a5d63ce079428c5423299853ed2d8d96626f441801d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page