Skip to main content

Powerful data structures for data analysis, time series, and statistics

Project description



pandas: powerful Python data analysis toolkit

PyPI Latest Release Conda Latest Release DOI Package Status License Coverage Downloads Gitter Powered by NumFOCUS Code style: black Imports: isort

What is it?

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way towards this goal.

Main Features

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN, NA, or NaT) in floating point as well as non-floating point data
  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
  • Intuitive merging and joining data sets
  • Flexible reshaping and pivoting of data sets
  • Hierarchical labeling of axes (possible to have multiple labels per tick)
  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format
  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging

Where to get it

The source code is currently hosted on GitHub at: https://github.com/pandas-dev/pandas

Binary installers for the latest released version are available at the Python Package Index (PyPI) and on Conda.

# conda
conda install pandas
# or PyPI
pip install pandas

Dependencies

See the full installation instructions for minimum supported versions of required, recommended and optional dependencies.

Installation from sources

To install pandas from source you need Cython in addition to the normal dependencies above. Cython can be installed from PyPI:

pip install cython

In the pandas directory (same one where you found this file after cloning the git repo), execute:

python setup.py install

or for installing in development mode:

python -m pip install -e . --no-build-isolation --no-use-pep517

If you have make, you can also use make develop to run the same command.

or alternatively

python setup.py develop

See the full instructions for installing from source.

License

BSD 3

Documentation

The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable

Background

Work on pandas started at AQR (a quantitative hedge fund) in 2008 and has been under active development since then.

Getting Help

For usage questions, the best place to go to is StackOverflow. Further, general questions and discussions can also take place on the pydata mailing list.

Discussion and Development

Most development discussions take place on GitHub in this repo. Further, the pandas-dev mailing list can also be used for specialized discussions or design issues, and a Gitter channel is available for quick development related questions.

Contributing to pandas Open Source Helpers

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide.

If you are simply looking to start working with the pandas codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. There are a number of issues listed under Docs and good first issue where you could start out.

You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to subscribe to pandas on CodeTriage.

Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing list or on Gitter.

As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: Contributor Code of Conduct

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-1.5.2.tar.gz (5.2 MB view details)

Uploaded Source

Built Distributions

pandas-1.5.2-cp311-cp311-win_amd64.whl (10.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pandas-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pandas-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pandas-1.5.2-cp311-cp311-macosx_11_0_arm64.whl (10.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pandas-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pandas-1.5.2-cp311-cp311-macosx_10_9_universal2.whl (18.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.5.2-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pandas-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pandas-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pandas-1.5.2-cp310-cp310-macosx_11_0_arm64.whl (10.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pandas-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pandas-1.5.2-cp310-cp310-macosx_10_9_universal2.whl (18.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.5.2-cp39-cp39-win_amd64.whl (10.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pandas-1.5.2-cp39-cp39-win32.whl (9.7 MB view details)

Uploaded CPython 3.9 Windows x86

pandas-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pandas-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pandas-1.5.2-cp39-cp39-macosx_11_0_arm64.whl (10.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pandas-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pandas-1.5.2-cp39-cp39-macosx_10_9_universal2.whl (18.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.5.2-cp38-cp38-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pandas-1.5.2-cp38-cp38-win32.whl (9.7 MB view details)

Uploaded CPython 3.8 Windows x86

pandas-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pandas-1.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pandas-1.5.2-cp38-cp38-macosx_11_0_arm64.whl (10.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pandas-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pandas-1.5.2-cp38-cp38-macosx_10_9_universal2.whl (18.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pandas-1.5.2.tar.gz.

File metadata

  • Download URL: pandas-1.5.2.tar.gz
  • Upload date:
  • Size: 5.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.2.tar.gz
Algorithm Hash digest
SHA256 220b98d15cee0b2cd839a6358bd1f273d0356bf964c1a1aeb32d47db0215488b
MD5 6da04c30fa35af20fe4d866e0f05caae
BLAKE2b-256 4d07c4d69e1acb7723ca49d24fc60a89aa07a914dfb8e7a07fdbb9d8646630cd

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pandas-1.5.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 82ae615826da838a8e5d4d630eb70c993ab8636f0eff13cb28aafc4291b632b5
MD5 2b4b3d73ecc64cc81c098ab01cb00d6e
BLAKE2b-256 af254cbf835f48366ac1007ca959781d1ac770caa36cd27af148dacdde18d397

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6257b314fc14958f8122779e5a1557517b0f8e500cfb2bd53fa1f75a8ad0af2
MD5 22b8af4d0d5f61bc179745624456ca65
BLAKE2b-256 b6baa5ed09e4044c683fab1dec7a18fb139db0afde61def7a4d8fa2848a2d9c8

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8092a368d3eb7116e270525329a3e5c15ae796ccdf7ccb17839a73b4f5084a39
MD5 f6a646ad11f7436b4110ac5de0651bc9
BLAKE2b-256 f3a56ef3a6ccf1f0962fa378b3d0842060ba6288ddc036b230c190849dcdad08

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b4f5a82afa4f1ff482ab8ded2ae8a453a2cdfde2001567b3ca24a4c5c5ca0db3
MD5 4bd2bee5653c45118737f1c09fe8a191
BLAKE2b-256 24fa7786bedc2d2b2c84787553800c85d7d2b165c51f03922b441594d1b67f8d

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc3cd122bea268998b79adebbb8343b735a5511ec14efb70a39e7acbc11ccbdc
MD5 57b59cce97ab99f8dd06a75cb0e0668c
BLAKE2b-256 bc3a4ee3bd4daac874ae484161802f3c8ecdafa68b3b97685e93ef1ef9e3814d

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 375262829c8c700c3e7cbb336810b94367b9c4889818bbd910d0ecb4e45dc261
MD5 3490c11d07d9762e9201f2ec40c26991
BLAKE2b-256 51e37627c324661db1c891a6814c343be6c6a238d13868dd8f01a6d4f388dab0

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pandas-1.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4aed257c7484d01c9a194d9a94758b37d3d751849c05a0050c087a358c41ad1f
MD5 447b797371429bd2f944407d44e3a969
BLAKE2b-256 ff2ff7a9deb154eabd2e99cf1bcccefb3c7529d126cb2b551070dc8226a96282

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0d8fd58df5d17ddb8c72a5075d87cd80d71b542571b5f78178fb067fa4e9c72
MD5 3783e8e3361e0b771cbf918f19560453
BLAKE2b-256 60e3d90929366de6562529cd98f81b5735bd71230c99764e19dd26bfd99c0e33

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1fc87eac0541a7d24648a001d553406f4256e744d92df1df8ebe41829a915028
MD5 93cfdbf057aadafaed69c8882edfa2ce
BLAKE2b-256 b7a4f40c5a989c2b9381ebe3a19be28a15469a9233c83a82ca86f8abe455f41b

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2552bffc808641c6eb471e55aa6899fa002ac94e4eebfa9ec058649122db5824
MD5 e3cd439c67ad3b49573bd3c1ce085115
BLAKE2b-256 0c13a1b217a8665099b9a069f726178e86bd4c01aee37576f19936793b436f85

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2b83abd292194f350bb04e188f9379d36b8dfac24dd445d5c87575f3beaf789
MD5 06ad8b4d1344bb85a1fe8c3b186b920e
BLAKE2b-256 67a3903393efaae5be8c11cd01ea5b950bc9950096574ef9ca79466779840b63

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e9dbacd22555c2d47f262ef96bb4e30880e5956169741400af8b306bbb24a273
MD5 f8797552bef17d855d8db2b0e92f91cc
BLAKE2b-256 16ca83e8a97e1a66f2bcc09e24ddec32755ddfe5d2a162c1eb493ee02a0f77a3

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pandas-1.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c218796d59d5abd8780170c937b812c9637e84c32f8271bbf9845970f8c1351f
MD5 b03c3068fc7c36a2a4fb54e5eb2b523d
BLAKE2b-256 764fa59a029fd3000e2a5e5075eca9d6a8022aec23f60088df79f0a989d00702

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pandas-1.5.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e7469271497960b6a781eaa930cba8af400dd59b62ec9ca2f4d31a19f2f91090
MD5 5ac3a9ce545b8a02425fdbf1aa80b0d7
BLAKE2b-256 44d3e9df2f568692647fe5c3b02506610829d004a00b3ba5c7fd92d382f8d511

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 344021ed3e639e017b452aa8f5f6bf38a8806f5852e217a7594417fb9bbfa00e
MD5 c7b4abb23887b9c49a62b10679ed19f4
BLAKE2b-256 5eed5c9cdaa5d48c7194bef4335eab3cdc2f8afa868a5546027e018ea9deb4c3

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0183cb04a057cc38fde5244909fca9826d5d57c4a5b7390c0cc3fa7acd9fa883
MD5 e4f7289587687d4e6f9f97b81ec6585c
BLAKE2b-256 67165b7621255df6c0851b1f03052d48fd9f229c414dd366f6fda51da47cb96c

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e18bc3764cbb5e118be139b3b611bc3fbc5d3be42a7e827d1096f46087b395eb
MD5 aeeee2b0846df9269a7986979c79def8
BLAKE2b-256 94c1a1f4662c585a820dc85c6c8251af89b80d1326bcfd3b341a878ed009e997

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 315e19a3e5c2ab47a67467fc0362cb36c7c60a93b6457f675d7d9615edad2ebe
MD5 8c7eacbc816c7861cacc841006480bf0
BLAKE2b-256 7f738ac702651edb2282ba059575ad73e3eba0f129df72c7c2d417af8b528896

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9608000a5a45f663be6af5c70c3cbe634fa19243e720eb380c0d378666bc7702
MD5 206eb0fd9a2f9b65ec13b19095afb6ed
BLAKE2b-256 24c38182eb4e261e9fd24a992f78a6895b4b60b6a353ff03b83da748b8c7c03c

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pandas-1.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 73f219fdc1777cf3c45fde7f0708732ec6950dfc598afc50588d0d285fddaefc
MD5 5b883de757b29ec88de86ff7189b8661
BLAKE2b-256 b8cb9fd77ef44900d29993d0a51ae7c552fb4e4953358fcbb1a676c64d05ce04

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: pandas-1.5.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 530948945e7b6c95e6fa7aa4be2be25764af53fba93fe76d912e35d1c9ee46f5
MD5 7cdce9ac7bdbed69d98721bc36480104
BLAKE2b-256 999852103c91ee1a483ba3403afb38c5e506ef2873192f7cf727a3511cf1dd5f

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ae7e989f12628f41e804847a8cc2943d362440132919a69429d4dea1f164da0
MD5 bcefe6f91db002c7f172273560b3319f
BLAKE2b-256 9c6c3bfce7f343360c1b537fb59ecbf6865e21d5c8d9e07a632bc6725744e919

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a40dd1e9f22e01e66ed534d6a965eb99546b41d4d52dbdb66565608fde48203f
MD5 461152e3b62eca0fec27da3782bd102c
BLAKE2b-256 5b7cafc4ed0a1d289bfbdb728fa51b418d8600ddfa84a4bdfda17fff38924b6c

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71f510b0efe1629bf2f7c0eadb1ff0b9cf611e87b73cd017e6b7d6adb40e2b3a
MD5 46ce73c141a61da64311ebad54bfd8ac
BLAKE2b-256 b3e9177dae31a2e3c75a3bfdb63136b72bb036d9de0817d8fbbd7c33c37ce07e

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c009a92e81ce836212ce7aa98b219db7961a8b95999b97af566b8dc8c33e9519
MD5 33df91f446f5532b2e480e529eedb676
BLAKE2b-256 36bd3e73defb8b643d9dacde5d875319287d960a86e62e721140961773f22910

See more details on using hashes here.

File details

Details for the file pandas-1.5.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pandas-1.5.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 457d8c3d42314ff47cc2d6c54f8fc0d23954b47977b2caed09cd9635cb75388b
MD5 857faca1a4921304ebedef65e502ed15
BLAKE2b-256 82d9f550aa2c6ceb89c6b1b2cc5491b605568624cbc53c86a05f350be9f0d583

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page