Pandas degree days
Project description
Welcome to pandas_degreedays’s documentation!
pandas_degreedays
Pandas Degree Days (pandas_degreedays) is a Python package to calculate degree days.
Usage
You must provide a Pandas Series with temperature values.
Let’s call ts_temp this Serie which looks like:
datetime 2014-03-20 23:00:00 11 2014-03-20 23:30:00 11 2014-03-21 00:00:00 11 2014-03-21 00:30:00 11 2014-03-21 01:00:00 11 2014-03-21 01:30:00 11 ... 2014-11-01 20:00:00 12 2014-11-01 20:30:00 12 2014-11-01 21:00:00 12 2014-11-01 21:30:00 12 2014-11-01 22:00:00 12 2014-11-01 22:30:00 12 Name: temp, Length: 10757
You can get a time serie with temperature in sample folder and read it using:
import pandas as pd filename = 'temperature_sample.xls' df_temp = pd.read_excel(filename) df_temp = df_temp.set_index('datetime') ts_temp = df_temp['temp']
You can also fetch a time serie with temperature from OpenWeatherMap.org. You need to install first openweathermap_requests.
import logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) from pandas_degreedays.provider import TemperatureProvider ts_temp = TemperatureProvider('OpenWeatherMap', api_key='').get_from_coordinates(0.34189, 46.5798114, '20120601', '20141215')
We can see if some data are missing using:
idx = ts_temp.index s_idx = pd.Series(idx, index=idx) diff_idx = s_idx-s_idx.shift(1) s_sampling_period = diff_idx.value_counts() sampling_period = s_sampling_period.index[0] # most prevalent sampling period not_sampling_period = (diff_idx != sampling_period) # True / False
We can interpolate linearly missing data using:
from pandas_degreedays import inter_lin_nan ts_temp = inter_lin_nan(ts_temp, '1H') # interpolates linearly NaN
We can calculate degree days using:
from pandas_degreedays import calculate_dd df_degreedays = calculate_dd(ts_temp, method='pro', typ='heating', Tref=18.0, group='yearly')
Tref is reference temperature - default value is 18.0
from pandas_degreedays import yearly_month df_degreedays = calculate_dd(ts_temp, method='pro', typ='heating', Tref=18.0, group=lambda dt: yearly_month(dt, 10))
It outputs a Pandas DataFrame with degree days like:
Tmin Tmax Tavg Tref DD DD_cum 2014-03-22 7.0 11.0 9.00 18 9.000000 9.000000 2014-03-23 3.0 12.0 7.50 18 10.500000 19.500000 2014-03-24 0.0 10.0 5.00 18 13.000000 32.500000 2014-03-25 6.0 10.0 8.00 18 10.000000 42.500000 2014-03-26 5.0 12.0 8.50 18 9.500000 52.000000 2014-03-27 2.0 8.0 5.00 18 13.000000 65.000000 ... ... ... ... ... ... ... 2014-10-26 5.0 17.0 11.00 18 7.000000 653.547663 2014-10-27 9.0 22.0 15.50 18 3.336923 656.884586 2014-10-28 7.5 20.0 13.75 18 4.544400 661.428986 2014-10-29 8.0 19.0 13.50 18 4.618182 666.047168 2014-10-30 12.0 22.0 17.00 18 1.992000 668.039168 2014-10-31 11.0 24.0 17.50 18 2.143077 670.182245 [224 rows x 6 columns]
You can display plot using:
from pandas_degreedays import plot_temp plot_temp(ts_temp, df_degreedays)
About Pandas
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It’s a very convenient library to work with time series.
Install
From Python package index
$ pip install pandas_degreedays
From source
Get latest version using Git
$ git clone https://github.com/scls19fr/pandas_degreedays.git $ cd pandas_degreedays $ python setup.py install
Links
Documentation can be found at Read The Docs ;
Source code and issue tracking can be found at GitHub.
Feel free to tip me!
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pandas_degreedays-0.0.6-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 053263517a3b159e024b7429bf4e020f305571eb32e688d15ee99b79d25afa01 |
|
MD5 | 5e80195a2f5cfba7ebb9dfb59baf2353 |
|
BLAKE2b-256 | f41b859faef056cedf3cc71a62a88426e075e6e70a8a3ff38b2fab8841e1e184 |