Skip to main content

pandas, scikit-learn and xgboost integration

Project description

https://img.shields.io/pypi/v/pandas_ml.svg Latest Docs https://travis-ci.org/pandas-ml/pandas-ml.svg?branch=master https://coveralls.io/repos/pandas-ml/pandas-ml/badge.svg?branch=master&service=github

Overview

pandas, scikit-learn and xgboost integration.

Installation

$ pip install pandas_ml

Example

>>> import pandas_ml as pdml
>>> import sklearn.datasets as datasets

# create ModelFrame instance from sklearn.datasets
>>> df = pdml.ModelFrame(datasets.load_digits())
>>> type(df)
<class 'pandas_ml.core.frame.ModelFrame'>

# binarize data (features), not touching target
>>> df.data = df.data.preprocessing.binarize()
>>> df.head()
   .target  0  1  2  3  4  5  6  7  8 ...  54  55  56  57  58  59  60  61  62  63
0        0  0  0  1  1  1  1  0  0  0 ...   0   0   0   0   1   1   1   0   0   0
1        1  0  0  0  1  1  1  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
2        2  0  0  0  1  1  1  0  0  0 ...   1   0   0   0   0   1   1   1   1   0
3        3  0  0  1  1  1  1  0  0  0 ...   1   0   0   0   1   1   1   1   0   0
4        4  0  0  0  1  1  0  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
[5 rows x 65 columns]

# split to training and test data
>>> train_df, test_df = df.model_selection.train_test_split()

# create estimator (accessor is mapped to sklearn namespace)
>>> estimator = df.svm.LinearSVC()

# fit to training data
>>> train_df.fit(estimator)

# predict test data
>>> test_df.predict(estimator)
0     4
1     2
2     7
...
448    5
449    8
Length: 450, dtype: int64

# Evaluate the result
>>> test_df.metrics.confusion_matrix()
Predicted   0   1   2   3   4   5   6   7   8   9
Target
0          52   0   0   0   0   0   0   0   0   0
1           0  37   1   0   0   1   0   0   3   3
2           0   2  48   1   0   0   0   1   1   0
3           1   1   0  44   0   1   0   0   3   1
4           1   0   0   0  43   0   1   0   0   0
5           0   1   0   0   0  39   0   0   0   0
6           0   1   0   0   1   0  35   0   0   0
7           0   0   0   0   2   0   0  42   1   0
8           0   2   1   0   1   0   0   0  33   1
9           0   2   1   2   0   0   0   0   1  38

Supported Packages

  • scikit-learn
  • patsy
  • xgboost

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pandas_ml-0.5.0.tar.gz (76.9 kB) Copy SHA256 hash SHA256 Source None Nov 16, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page