Skip to main content

Extensions of pythonnet package to support pandas DataFrame conversions

Project description

pandasnet

Build Status

license pypi python supported

pandasnet is a python package build on top of pythonnet. It provides additional data conversions for pandas, numpy and datetime

Prerequisites

  • python 3.6 or higher.
  • dotnet.

dotnet also provides scripts to proceed the installation by command line.

Installation

pip install pandasnet

Features

To load the converter you need to import the package once in your python environment. If the dotnet clr isn't started yet through the pytonnet package the import will.

import pandasnet

We construct a simple C# function to test conversion

using System;
using System.Collections.Generic;

namespace LibForTests
{
    public class PandasNet
    {
        public static Dictionary<string, Array> BasicDataFrame(Dictionary<string, Array> df)
            => df;
    }
}

We build this function into a library named LibForTests.dll. We load this library into our python environment then use it.

import clr
import pandasnet # Load the converters
import pandas as pd
from datetime import datetime

# Load your dll
clr.AddReference('LibForTests.dll')
from LibForTests import PandasNet as pdnet

x = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [1.23, 1.24, 1.22],
    'C': ['foo', 'bar', 'other'],
    'D': [datetime(2021, 1, 22), datetime(2021, 1, 23), datetime(2021, 1, 24)]
})
y = pdnet.BasicDataFrame(x)

print(y)

Below an exhausitve list of supported data convertions.

Python -> .Net

Python .Net
datetime.datetime DateTime
datetime.date DateTime
datetime.timedelta TimeSpan
datetime.time TimeSpan
numpy.ndarray(dtype=bool_) bool[]
numpy.ndarray(dtype=int8) sbyte[]
numpy.ndarray(dtype=int16) short[]
numpy.ndarray(dtype=int32) int[]
numpy.ndarray(dtype=int64) long[]
numpy.ndarray(dtype=uint8) byte[]
numpy.ndarray(dtype=uint16) ushort[]
numpy.ndarray(dtype=uint32) uint[]
numpy.ndarray(dtype=uint64) ulong[]
numpy.ndarray(dtype=float32) float[]
numpy.ndarray(dtype=float64) double[]
numpy.ndarray(dtype=datetime64) DateTime[]
numpy.ndarray(dtype=timedelta64) TimeSpan[]
numpy.ndarray(dtype=str) string[]
pandas._libs.tslibs.timestamps.Timestamp DateTime
pandas._libs.tslibs.timedeltas.TimeDelta TimeSpan
pandas.core.series.Series Array
pandas.core.frame.DataFrame Dictionary[string, Array]

.Net -> Python

.Net Python
DateTime datetime.datetime
TimeSpan datetime.timedelta
bool[] numpy.ndarray(dtype=bool_)
sbyte[] numpy.ndarray(dtype=int8)
short[] numpy.ndarray(dtype=int16)
int[] numpy.ndarray(dtype=int32)
long[] numpy.ndarray(dtype=int64)
byte[] numpy.ndarray(dtype=uint8)
ushort[] numpy.ndarray(dtype=uint16)
uint[] numpy.ndarray(dtype=uint32)
ulong[] numpy.ndarray(dtype=uint64)
float[] numpy.ndarray(dtype=float32)
double[] numpy.ndarray(dtype=float64)
DateTime[] numpy.ndarray(dtype=datetime64)
TimeSpan[] numpy.ndarray(dtype=timedelta64)
Dictionary[string, Array] pandas.core.frame.DataFrame

Contributing

Issue tracker: https://github.com/fdieulle/pandasnet/issues

If you want to checkout the project and propose your own contribution, you will need to setup it following few steps:

Create a virtual environment:

python -m venv venv

Activate your virtual environment:

venv/Scripts/activate

Install package dependencies

pip install -r requirements.txt

License

This project is open source under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandasnet-0.9.tar.gz (16.8 kB view details)

Uploaded Source

Built Distribution

pandasnet-0.9-py3-none-any.whl (22.8 kB view details)

Uploaded Python 3

File details

Details for the file pandasnet-0.9.tar.gz.

File metadata

  • Download URL: pandasnet-0.9.tar.gz
  • Upload date:
  • Size: 16.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pandasnet-0.9.tar.gz
Algorithm Hash digest
SHA256 ecc99c3be47e9d9abe7481d67c99606a036154aa256a3700684049e469861cfe
MD5 7aae2141fc5ffc85ea1b255901a39000
BLAKE2b-256 f75b6341ff1cdcb4ccb10bb638289d3e75152e09a78ee9720147c4269f9d74ca

See more details on using hashes here.

File details

Details for the file pandasnet-0.9-py3-none-any.whl.

File metadata

  • Download URL: pandasnet-0.9-py3-none-any.whl
  • Upload date:
  • Size: 22.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pandasnet-0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 d92755b16cb5c31c17ae6c2a9b8cf6a2993ac2c3056488e0d7580a6a5ad61338
MD5 f0241d224770fdac6849b1520ffc446c
BLAKE2b-256 cedbfc8d387ec5936e664a7e15e75866b0b36ce3eb1d61b620d6faa8787351a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page